
Learning to Trick Humans: Evaluation Criteria for Human-Written and
Machine-Generated Text

Arun Kirubarajan∗

University of Pennsylvania
kiruba@cis.upenn.edu

Liam Dugan∗

University of Pennsylvania
ldugan@seas.upenn.edu

Abstract

Large neural network based language mod-
els (1B+ parameters) such as GPT-2 have
been shown to produce high-quality text when
trained on large datasets (Radford et al., 2019).
However, these models still make errors and
there lacks a set of criteria to diagnose is-
sues in natural language generation. Further-
more, the rise of AI-generated content on the
internet prompts the question of how good hu-
mans are at detecting computer-generated text.
In this research, we present a Turing Test in-
spired task for humans to annotate evaluation
criteria by discriminating between human and
machine written content. By presenting sen-
tences one at a time to human annotators, we
show that text generation machines can make
it an average of 2.14 sentences before a human
reader notices the text has switched to a ma-
chine. We also create an error taxonomy of
generated text by having annotators diagnose
poor text with error tags (e.g. grammar, entail-
ment, common-sense).

1 Introduction

There is little agreement on how to evaluate natural
language generation systems using human annota-
tion due to the wide variety of existing standards
(van der Lee et al., 2019). This experiment will
be focused on using human annotation to answer
what qualitative and linguistic qualities in particular
give away the fact that a text is or is not human-
written. Annotators will be able to select from a
predefined list of error categories, and select sen-
tences that provide the evidence for the annotator
distinction. For example, an annotator may notice
a failing coreference resolution, and provide the
sentence containing the original named entity as
context for the error. The goal of this project is to
obtain qualitative human assessment of provided
text in a systemized fashion in order to increase the
accuracy and “human”-ness of text generation.

2 Related Work

Previous work has shown that properly evaluating
natural language generation systems automatically
is difficult (van der Lee et al., 2019). Various meth-
ods for automatic and human evalution have been
proposed over time to identify weaknesses in gen-
eration systems.

The bAbI dataset (Weston et al., 2015) aims to
diagnose a model’s limitations by providing the
particular granular tasks for which it fails. This
work was a major inspiration for ours as we aim
to develop a system of categories for annotators
to tag generated sentences with as a means of ana-
lyzing a model’s capabilities and the text’s overall
linguistic quality. The ChatEval framework (Sedoc
et al., 2019) also provides a suite of automatic met-
rics but also includes studies of human annotator’s
preference between two given generation systems
to allow for more human-based grounding of their
metrics.

Additionally, previous work done by Ippolito
et al. (2019) has analyzed how choices in sampling
strategy and differing lengths of prompts contribute
to the accuracies of both human and machine sys-
tems in specifically the detection of machine gener-
ated text.

This paper aims to provide three other dimen-
sions to this previous work:

1. To assess the distribution of qualitative linguis-
tic qualities that humans use to identify gener-
ated texts as they vary with prompt length.

2. To identify the relative speeds (e.g. number of
sentences) that it takes before a human can de-
termine that something is machine generated

3. To investigate which qualitative errors tend to
occur specifically at these boundaries between
human and machine text.

3 Data

In order to minimize the influence of factual errors
in favor of more semantic errors, we sampled our
prompts from the dataset that was used to train
the popular text adventure game AI Dungeon1.
The dataset consists of over 100k lines of user-
submitted text excerpts from text-based fantasy sto-
ries posted to the website Choose Your Story2.

Below is a sample from our training data:

"You, you and you!"
he shouts,
selecting three rats
from the group.
"Start moving the
prisoners back."
"Yes, yes," they snarl,
as they
begin to shout and
whip the prisoners
into movement.
"You!" he shouts, pointing
a long finger at you.
"Kill the horses."
You nod, walking
over to the horses.

Using this data allowed us to prevent annotators
from using outside knowledge to assist in discrimi-
nation while additionally allowing annotators more
room to focus on particular details of text, such
as awkward wording, contextual errors, and co-
reference mistakes. One issue with this data was
the frequency of dialogues turns and the ambigu-
ity this creates when deciding what is and isn’t a
sentence. We overcame this by specifically em-
ploying a sentence tokenizer (See Method section)
instead of assuming period or newline would be
a good split. Additionally we had to deal with
<|startoftext|> and <|endoftext|> to-
kens and the occasional human grammatical error.
However, these difficulties were rare and overall
we are very pleased with the use of this data.

4 Method

For our error taxonomy we maintain four core cat-
egories of errors: Entailment Errors, Grammatical
Errors, Common-Sense Errors, and Repetition Er-
rors. We believed each to be distinct from the

1https://play.aidungeon.io/
2https://chooseyourstory.com/

others, while representing a common tendency for
poor model generations.

4.1 Annotator Interface

The annotation software was built in full-stack
Python using the Django Framework and a SQLite
database. The choice of a full relational database
was to ensure that sophisticated queries could be
made on the collected annotations for analysis (e.g.
average number of read sentences for a specific
prompt across all users). The Django Framework
contains libraries for a various functionalities of
production-ready application servers, and reduced
overall development time of the system. The error
taxonomy form shown to our annotators is shown
in Figure 2.

4.2 Prompt Length

One of the most important considerations taken
in this project was to ensure that our annotators
were not conditioned to look for errors in other-
wise inconspicuous human-written text. Our main
goal was to pinpoint sentences in text generations
where it was suddenly obvious to any human reader
that the text had switched to be machine gener-
ated. To this end we set 25% of our prompts to be
completely human-written with no generated por-
tion. This ensured that our annotators were more
cautious when deciding that a given sentence was
machine generated.

The remaining 75% of prompts were sampled
randomly from a 20% split of the AI Dungeon
training dataset (the other 80% being used to fine-
tune GPT-2). The lengths of our prompts are uni-
formly distributed between 1 and 9 sentences. The
sentences were tokenized with the tokenizer de-
scribed in (Kiss and Strunk, 2006). We also parsed
out symbols such as <|startoftext|> and
<|endoftext|> that would serve as giveaways
to annotators. This was done by re-sampling in-
stead of regular expression replacement to avoid
having the context of our sentences switch mid-
prompt. Otherwise, all human sampled text is left
as-is with any and all grammatical errors or new-
lines left unchanged.

4.3 Text Generation

Fine-tuning and text generation were done on
an NVIDIA Tesla P100 with 16MB of GPU
RAM provided by the Google Colab Pro ser-

https://play.aidungeon.io/
https://chooseyourstory.com/

Figure 1: Screenshot of the annotation interface.

Figure 2: Screenshot of the error taxonomy form.

vice. We used the gpt-2-simple3 package to
fine-tune the GPT-2 (van der Lee et al., 2019)
Large 774M parameter model for 1000 steps
on 100k lines of training text. We did not
tokenize or remove <|startoftext|> and
<|endoftext|> characters from the input to
ensure text consistency.

For each generation sample, we prompted our
fine-tuned GPT-2 model with only the text from the
sampled prompt (and none of the previous context)
to ensure that the model was only generating based
on context that was also visible to the annotators.
The sentence tokens of the prompts were concate-
nated together by appending newline characters;
This is generally consistent with the style of the
raw text.

3https://github.com/minimaxir/
gpt-2-simple

We generated sentences with GPT-2 such that all
of our human-machine hybrid text samples had the
same 10 sentence length. We chose random sam-
pling and temperature of 1.0 so that the generations
accurately reflected patterns present in GPT-2 it-
self as opposed to artificially minimizing perplexity
through other sampling techniques. We leave it to
future work to investigate the effects of strategies
such as Nucleus Sampling (Holtzman et al., 2019)
or top-k random sampling on human perception of
generated text.

Sample generation from fine-tuned GPT-2
model:

As you close the gap
between you and the elf,
he raises his hand
and kneels before you,
the elf’s back and neck
stretching as his
arms around you.

5 Evaluation

To evaluate the efficacy of the text generation sys-
tems with regards to tricking our human annota-
tors we calculated the accuracy of the annotators
in determining which sentence was the boundary
between human and machine text as well as the
average number of sentences that humans picked
before or after the boundary (excluding the 25%
of samples that were fully human). We addition-
ally looked at the qualitative categories to identify
which errors were the most common and which
were the least common.

https://github.com/minimaxir/gpt-2-simple
https://github.com/minimaxir/gpt-2-simple

6 Results

Our experiments consisted of over 150 annotations
from 11 different annotators, all of whom had vary-
ing experiences with machine learning and compu-
tational linguistics. All annotations were collected
using our annotation system referenced in Section
3.1, where we maintain the 1:3 ratio between hu-
man and machine generated texts.

6.1 Boundary Detection

Our main finding is that only 10% of annotators
are able to correctly identify the exact boundary
sentence when presented with a machine-generated
text (the sample space of this analysis only includes
texts with at least one machine-generated sentence).
This is compared with a 16% rate of detecting the
correct boundary sentence for both machine and
human written text (human boundaries being the
given prompt).

For all texts which had at least one machine-
generated sentence, we observe that 52% of an-
notators correctly identify the text as being ma-
chine generated after the boundary sentence. Addi-
tionally, 38% of annotators were incorrect, mean-
ing that they selected a sentence before the actual
boundary sentence. In other words, 38% of the
time, the annotator thought that a human-written
sentence was actually machine generated.

On average, the difference between the selected
sentence index and the true sentence boundary was
2.14 sentences. This means that humans remain
”tricked” by the system for over two sentences. Fu-
ture work will involve partitioning our data into
the specific generated sentences that tricked hu-
mans and the sentences that did not and diagnosing
which linguistic features of the text allowed it to
fool humans.

6.2 Error Taxonomy

Over 80% of annotations included an error diagno-
sis. The most common errors listed were Entail-
ment Errors, comprising of 38 of the 150 initial
annotations. The next largest error category were
the Common-Sense Errors, with 28 distinct anno-
tations. The Repetition Errors and Grammatical
Errors only made up 15 and 19 annotations respec-
tively, which is surprising due to the well-known
phenomena of repetition in models. Future work
will involve allowing users to insert their own error
tags, in order to expand the error topology of the
project.

7 Discussion

This paper reveals that humans still have difficult
with the task of distinguishing between human-
written and machine-generated text. However, the
initial results of the project presents opportunities
to refine the process in order to pursue additional
avenues of research. We hope that each addition
will allow us to further our research into human
classification of machine-generated text.

7.1 Annotator Reliability

As was mentioned in Section 4.2, one of our main
goals in this project was to avoid conditioning our
human annotators to look for errors in otherwise
inconspicuous human text. If we were wholly suc-
cessful in this regard, the amount of annotators that
selected a sentence before the boundary would be
0. While 38% is definitely better than 50%, it still
raises doubts about the efficacy of our attempts to
caution our annotators against reckless annotating.
We must be careful about this 38% and ensure that
in future iterations of these experiments, the num-
ber is kept as low as possible. We may even have
to resort to potentially throwing out certain anno-
tators’ data if they are too quick to look for errors
where there aren’t any.

With that in mind, all results from this project
should be considered a lower bound for human ac-
curacy in detection of generated text. In a fully
unstructured environment such as a news website
or social media post, it is very unlikely that a hu-
man will be able to determine that a given passage
has become machine generated with over 50% ac-
curacy.

7.2 Error Tags

Although not all of our annotators had a compu-
tational linguistics background, future annotators
may not understand what the error tags entail. If
annotators are not able to correctly categorize er-
rors, it detracts from the overall quality of the error
taxonomy. Future work will involve re-naming the
current set of tags and including an operational
definition with examples.

7.3 Generation Domain

Although the Text Adventure domain prevented an-
notators from using outside knowledge to assist in
discrimination, it sometimes can create noise in the
annotation due to the fantasy elements. Some an-
notations involved annotators mislabelling human-

written sentences as non-sensical due to the neces-
sary fantasy context behind the text. Future work
will involve fine-tuning language models on more
thematically general domains, such as Wikipedia
or Reddit.

7.4 Annotator Signal

Upon making the boundary selection, annotators
are immediately presented with the correct bound-
ary sentence. It’s possible that this implicitly con-
ditions the type of errors that the annotators are
prompted to choose between. Future revisions to
the annotation design will be to only present an-
notator accuracy after completing a set number of
annotations (i.e. after they complete the error diag-
nosis).

7.5 Contextual Inference

One of the problems that plagued our annotators
was the fact that the sentences shown which were
human-written often-times incorporated names of
characters and places which were not mentioned
in the prompt. This means that annotators were
conditioned to erroneously select certain sentences
for entailment errors when, in reality, all infor-
mation was properly entailed, the prompt just
wasn’t long enough. We plan to remedy this
in the future by only starting to sample from
<|startoftext|> tokens and never from the
middle of human-written stories. This way, if there
is an unrelated or unseen name brought up in one
of the sentences following the initial sentence, our
annotator can be sure that it is the fault of the gen-
eration system.

8 Attribution

In the early stages of the project, both Arun and
Liam contributed to the experimental design of
the process, including the annotation design. This
involved reading previous work, and experiment-
ing with large pre-trained language models for av-
enues of exploration. For the implementation of the
project, Arun implemented the annotation system
and analyzed the annotation results whereas Liam
used large pre-trained language models to gener-
ated text and interleave them with human prompts
to feed into the system.

Acknowledgments

This work could not be done without the help of
Daphne Ippolito and Chris Callison-Burch as well

as members from Google Brain team for their feed-
back on our experimental design. We thank all
of our initial annotators for their help evaluating
machine written text.

References
Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin

Choi. 2019. The curious case of neural text degener-
ation. CoRR, abs/1904.09751.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2019. Human and auto-
matic detection of generated text. arXiv preprint
arXiv:1911.00650.

Tibor Kiss and Jan Strunk. 2006. Unsupervised multi-
lingual sentence boundary detection. Comput. Lin-
guist., 32(4):485–525.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

João Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai
Thirani, Lyle Ungar, and Chris Callison-Burch.
2019. ChatEval: A tool for chatbot evaluation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 60–65,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.18653/v1/N19-4011

