CIS 700: Interactive Fiction and Text Generation

Commonsense Reasoning

These slides are from the <u>ACL 2020</u> <u>Commonsense Tutorial</u> by Yejin Choi, Vered Shwartz, Maarten Sap, Antoine Bosselut, and Dan Roth

Monsters in a Tunnel

- **Two monsters are running** (rather than standing still on one foot)
- **One is chasing another** (rather than trying to copy his movements)
- The chaser has hostile intentions and the chased is afraid (even though two faces are identical)

Important Observations:

- A great deal of intuitive inferences are commonsense inferences, which can be described in natural language.
- None of these inferences is absolutely true. The inferences are **stochastic** in nature. Everything is **defeasible** with additional context.
- Commonsense inferences are about predicting new information that is likely to be true based on partially available information.

Claims of AI systems reaching a "human level"

GOOGLE WEB APPS

Google's AI translation system is approaching human-level accuracy Microsoft claims new speech recognition record

But there's still significant work to be done By Nick Statt | @nickstatt | Sep 27, 2016, 2:07pm EDT

SHARE

Microsoft, Google Beat Humans at Image Recognition

Deep learning algorithms compete at ImageNet challenge

R. Colin Johnson 2/18/2015 08:15 AM EST 14 comments

🐯 Penn Engineering

Alibaba and Microsoft AI beat human scores on Stanford reading test

Neural networks edged past human scores on the measure of machine reading.

achieving a super-human 5.1% error rate

ත් Reddit

🖂 Email

in Share

Tweet

BY TODD BISHOP on August 20, 2017 at 7:44 pm

5 Comments

f Share 820

Theory of Core Knowledge

Domain	Description
Objects	supports reasoning about objects and the laws of physics that govern them
Agents	supports reasoning about agents that act autonomously to pursue goals
Places	supports navigation and spatial reasoning around an environment
Number	supports reasoning about quality and how many things are present
Forms	supports representation of shapes and their affordances
Social Beings	supports reasoning about Theory of Mind and social interaction

Developmental psychologists have shown that children develop the ability to reason about these domains early in life. Such reasoning is important for later learning.

Definition of Common Sense

The basic level of **practical knowledge** and **reasoning** concerning **everyday situations** and **events** that are **commonly** shared among **most** people.

It's OK to keep the closet door open

It's not OK to keep the refrigerator door open because the food might go bad

Essential for humans to live and interact with each other in a reasonable and safe way Essential for AI to understand human needs and actions better CIS 700: Interactive Fiction and Text Generation

Commonsense resources

Grandma's glasses

Tom's grandma was reading a new book, when she dropped her glasses.

She couldn't pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.

Humans reason about the world with **mental models** [Graesser, 1994]

Tom's grandma was reading a new book, when she dropped her glasses.

She couldn't pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.

Overview of existing resources

How do you create a commonsense resource?

Desirable properties for a commonsense resource

Coverage

Large scale

Diverse knowledge types

Useful

High quality knowledge Usable in downstream tasks

Multiple resources tackle different knowledge types

CONCEPTNET: semantic knowledge in natural language form

What is ConceptNet?

General commonsense knowledge

21 million edges and over 8 million nodes (as of 2017)

- Over 85 languages
- In English: over 1.5 million nodes

Knowledge covered:

- Open Mind Commonsense assertions
- Wikipedia/Wiktionary semantic knowledge
- WordNet, Cyc ontological knowledge

ATOMIC:

inferential knowledge in natural language form

ATOMIC: 880,000 triples for AI systems to reason about *causes* and *effects* of everyday situations

X stops X's

as a resul[.] X wants

X feel

Penn Engin Vials back

ttack X ag

Y wants to yell at X

ATOMIC: knowledge of cause and effect Theory of Mind

Humans have theory of mind, allowing us to

- make inferences about people's mental states
- understand likely events that precede and follow (Moore, 2013)
- AI systems struggle with *inferential* reasoning
 - only find complex correlational patterns in data
 - limited to the domain they are trained on

(Pearl; Davis and Marcus 2015; Lake et al. 2017; Marcus 2018)

JUDEA PEARL WINNER OF THE TURING AWARD AND DANA MACKENZIE
ТНЕ
ΒΟΟΚΟΓ
WHY
α 🔶 β
THE NEW SCIENCE OF CAUSE AND EFFECT

Overview of existing resources

Existing knowledge bases

Existing knowledge bases

Renn Engineering

Existing knowledge bases

Represented in **symbolic logic** (e.g., LISP-style logic)

Represented in **natural language** (how humans *talk* and *think*)

ATOMIC

(Sap et al., 2019)

NELL (Mitchell et al., 2015)

OpenCyc 4.0 (Lenat, 2012)

ConceptNet 5.5 (Speer et al., 2017)

Knowledge of "what" (taxonomic: A isA B)

Knowledge of "*why*" and "*how*" (inferential: *causes* and *effects*)

Q: How do you gather commonsense knowledge at scale?

A: It depends on the type of knowledge

Renn Engineering

Some commonsense cannot be extracted

Text is subject to **reporting bias** (Gordon & Van Durme, 2013)

Noteworthy events Murdering 4x more common than exhaling

Commonsense is not often written *Grice's maxim of quantity*

😽 Penn Engineering

found when extracting commonsense knowledge on four large corpora using Knext (Gordon & Van Durme, 2013)

When communicating, people try to be as informative as they possibly can, and give as much information as is needed, and no more.
Eliciting commonsense from humans

Experts create knowledge base

Advantages:

- Quality guaranteed
- Can use complex representations (e.g., CycL, LISP)

Drawbacks:

🐯 Penn Engineering

- Time cost
- Training users

Natural language

- Accessible to non-experts
- Different phrasings allow for more nuanced knowledge

Fast and scalable collection

- Crowdsourcing
- Games with a purpose

WordNet (Miller et al., 1990) *ATOMIC* (Sap et al., 2019) *ConceptNet 5.5* (Speer et al., 2017)

Knowledge bases and mitigating biases

Neural and Symbolic Models of Commonsense Reasoning

😽 Penn Engineering

Katrina had the financial means to afford a new car while Monica did not, since <u>had a high paying job</u>.

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. *Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.* AAAI 2020.

Neural Architecture

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Monica had a high paying job.

Masked Language Models

Sentence:	Predictions:
Katrina had the financial means to afford a new car while Monica did not, since	8.8% She
[MASK] had a high paying job.	6.3%
	6.2% So
	5.2% Monica
	← Undo

http://conceptnet5.media.mit.edu/

Incorporating External Knowledge into Neural Models

Incorporating External Knowledge into Neural Models

Recipe

Story Ending Task (RocStories)

Agatha had always wanted pet birds. So one day she purchased two pet finches. Soon she couldn't stand their constant noise. And even worse was their constant mess.

Agatha decided to buy two more. (Wrong) Agatha decided to return them. (Right)

A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. *Nasrin Mostafazadeh, Nathanael Chambers Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen.* NAACL 2016.

ConceptNet

🐼 Penn Engineering

Conceptnet 5.5: An open multilingual graph of general knowledge. Robyn Speer, Joshua Chin, and Catherine Havasi. AAAI 2017.

Other Knowledge Sources

Neural Component

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Katrina had a high paying job.

[CLS] Katrina had the financial means to afford a new car while Monica did not, since [SEP] Monica had a high paying job.

Combination Method

- 1. Incorporate into scoring function
- 2. Symbolic \rightarrow vector representation \circ (+attention)
- 3. Multi-task learning

Incorporating External Knowledge into Neural Models

Example

Incorporating Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.

🐯 Penn Engineering

- Insufficient Coverage
- Not 100% Accurate
- Limited expressivity

Kai knew that things were getting out of control and managed to keep his temper in check

- Situations rarely found as-is in commonsense knowledge graphs

ATOMIC

(Sap et al., 2019)

(X goes to the mall, Effect on X, buys clothes)

(X goes the mall, Perception of X, rich)

(X gives Y some money, Reaction of Y, grateful)

- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes

- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes
- Suitable nodes are often uncontextualized

- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes
- Suitable nodes are often uncontextualized

How do we provide machines with large-scale commonsense knowledge?

Constructing Knowledge Graphs

Constructing Symbolic Knowledge Graphs

Challenges of Prior Approaches

 Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate

Constructing Knowledge Graphs Automatically

🐼 Penn Engineering

(Tandon et al., 2019)

Encyclopedic vs. Commonsense Knowledge

Encyclopedic Knowledge	Commonsense Knowledge
Explicitly written in text	Often assumed Grice's Maxim of Quantity
Ontological Mentions	
Deviations rarely written	

Encyclopedic vs. Commonsense Knowledge

Encyclopedic Knowledge	Commonsense Knowledge
Explicitly written in text	Often assumed Grice's Maxim of Quantity
Ontological Mentions	Complex Mentions e.g., Causal If-Then Knowledge
Deviations rarely written	

Encyclopedic vs. Commonsense Knowledge

Encyclopedic Knowledge	Commonsense Knowledge
Explicitly written in text	Often assumed Grice's Maxim of Quantity
Ontological Mentions	Complex Mentions e.g., Causal If-Then Knowledge
Deviations rarely written	Reporting Bias
	murders 4x more common than breating

Challenges of Prior Approaches

- Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate
- Commonsense knowledge is often implicit, and often can't be directly extracted from text

Constructing Knowledge Graphs Automatically

🐼 Penn Engineering

(Tandon et al., 2019)

Knowledge Base Completion

🐯 Penn Engineering

Commonsense Knowledge Base Completion

Commonsense Knowledge Base Completion and Generation!

Challenges of Prior Approaches

- Commonsense knowledge is immeasurably vast, making it impossible to manually enumerate
- Commonsense knowledge is often implicit, and often can't be directly extracted from text
- Commonsense knowledge resources are quite sparse, making them difficult to extend by only learning from examples

Solution Outline

- Leverage manually curated commonsense knowledge resources
- Learn from the examples to induce new relationships
- Scale up using language resources

Retrofit word embeddings on semantic resource

Learn knowledgeaware embeddings

🐯 Penn Engineering
Structure of Knowledge Tuple

🐯 Penn Engineering

Learning Structure of Knowledge

 $\mathcal{L} = -\sum \log P(\text{target words} | \text{seed words, relation})$

personsailsacrossoceans<requires>head entityrelation

Learning Structure of Knowledge

Language Model \rightarrow Knowledge Model: generates knowledge of the structure of the examples used for training

tail entity

COMET - ATOMIC

COMET - ConceptNet

Why does this work?

Transfer Learning from Language

Transfer Learning from Language

🐼 Penn Engineering

Question

Can't a language model do the same thing?

Unsupervised Commonsense Probing

(Dante, <born_in>, ?)

e.g. ELMo/BERT

Do Language Models know this?

🐼 Penn Engineering

Do Language Models know this?

Do Language Models know this?

Renn Engineering

Do Masked Language Models know this?

Sensitivity to cues

Candidate Sentence S_i	$\log p(S_i)$
"musician can playing musical instrument"	-5.7
"musician can be play musical instrument"	-4.9
"musician often play musical instrument"	-5.5
"a musician can play a musical instrument"	-2.9

Feldman et al., 2019

Prompt	Model Predictions
A has fur. A has fur, is big, and has claws. A has fur, is big, has claws, has teeth, is an animal, eats, is brown, and lives in woods	dog, cat, fox, cat, bear , lion, bear , wolf, cat,

Commonsense Transformers

- Language models implicitly represent knowledge

Language Model

🐼 Penn Engineering

Commonsense Transformers

- Language models implicitly represent knowledge
- Re-train them on knowledge graphs to learn structure of knowledge

Seed Knowledge Graph Training

Commonsense Transformers

🐼 Penn Engineering

- Language models implicitly represent knowledge
- Re-train them on knowledge graphs to learn structure of knowledge
- Resulting knowledge model generalizes structure to other concepts

What are the implications of this knowledge representation?

Commonsense Knowledge for any Situation

transformer-style architecture — input format is natural language

- event can be fully parsed

Kai knew that things were getting out of control and managed to keep his temper in check

Commonsense Knowledge for any Situation

transformer-style architecture — input format is natural language

- event can be fully parsed
- knowledge generated dynamically from neural knowledge model

Kai knew that things were getting out of control and managed to keep his temper in check

Kai wants to avoid trouble Kai intends to be calm Kai stays calm Kai is viewed as cautious

