Sabre

A Narrative Planner Supporting Intention and Deep Theory of Mind

Stephen G. Ware Cory Siler

NARRATIVE PLANNER

SABRE NARRATIVE PLANNER

Narrative Planning

A single decision maker

creates the appearance of a multi-agent system.

- Riedl and Young, "Narrative planning: balancing plot and character," in JAIR 2010
- Teutenberg and Porteous, "Efficient intent-based narrative generation...," in AAMAS 2013
- Ware and Young, "Glaive: a state-space narrative planner...," in AIIDE 2014

- Eger and Martens, "Character beliefs in story generation," INT 2017
- Thorne and Young, "Generating stories ... by modeling false character beliefs," in INT 2017
- Shirvani, Ware, and Farrell, "A possible worlds model of belief...," in AIIDE 2017

• Shirvani, Farrell, and Ware, "Combining intentionality and belief...," in AIIDE 2018

Syntax and Features

at(Tom) =

at(Tom) = Cottage

Helmert, "The Fast Downward planning system," in JAIR 2006

at(Tom) = Cottage path(Cottage, Market) = T

at(Tom) = Cottage
path(Cottage, Market) = T
wealth(Merchant) = 3

at(Tom) = Cottage path(Cottage, Market) = ⊤ wealth(Merchant) = 3 believes(Tom, wealth(Merchant)) = 2

at(Tom) = Cottage path(Cottage, Market) = T wealth(Merchant) = 3 believes(Tom, wealth(Merchant)) = 2

believes(Merchant, believes(Tom, wealth(Merchant))) = 3

Theory of Mind

• Arbitrarily deep

what *x* believes *y* believes *z* believes...

• No uncertainty

Everyone commits to beliefs, which can be wrong.

Other Syntactical Features

- Negation
- Disjunction
- Conditional Effects
- First Order Quantifiers

buy(Tom, Potion, Merchant, Market)

a: buy(Tom, Potion, Merchant, Market)

a: buy(Tom, Potion, Merchant, Market)
PRE(a):

a: buy(Tom, Potion, Merchant, Market)PRE(a): at(Tom) = Market

a: buy(Tom, Potion, Merchant, Market) PRE(a): at(Tom) = Market ∧ at(Merchant) = Market

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ at(Potion) = Merchant

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a):

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): at(Potion) = Tom

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1$

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1 \land$ wealth(Tom) -= 1

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1 \land$ wealth(Tom) -= 1CON(a):

a: buy(Tom, Potion, Merchant, Market)PRE(a): $at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1 \land$ wealth(Tom) -= 1CON(a): {Tom, Merchant}

a: buy(Tom, Potion, Merchant, Market) $PRE(a): at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1 \land$ wealth(Tom) = 1CON(a): {*Tom*, *Merchant*} OBS(a, c):

a: buy(Tom, Potion, Merchant, Market) $PRE(a): at(Tom) = Market \land at(Merchant) = Market \land$ $at(Potion) = Merchant \land wealth(Tom) \ge 1$ EFF(a): $at(Potion) = Tom \land wealth(Merchant) += 1 \land$ wealth(Tom) = 1CON(a): {*Tom*, *Merchant*} OBS(a, c): at(c) = Market

t: see(Tom, Merchant, Market)PRE(t):

EFF(t):

t: see(Tom, Merchant, Market)PRE(t): at(Tom) = Market

EFF(t):

t: *see*(*Tom*, *Merchant*, *Market*) PRE(*t*): $at(Tom) = Market \land at(Merchant) = Market$

EFF(t):

t: see(Tom, Merchant, Market)PRE(t): $at(Tom) = Market \land at(Merchant) = Market \land$ $believes(Tom, at(Merchant)) \neq Market$ EFF(t):

t: see(Tom, Merchant, Market)
PRE(t): at(Tom) = Market ∧ at(Merchant) = Market ∧
 believes(Tom, at(Merchant)) ≠ Market
EFF(t): believes(Tom, at(Merchant)) = Market

Pre-Processing

- Make action and trigger results explicit
- Detect and remove immutable fluents
- Detect and remove impossible actions and triggers

Results of an Event

After Tom buys the potion from the merchant...

- Tom has the potion.
- Tom knows he has the potion.
- The merchant knows Tom has the potion.
- Tom know that the merchant knows that he has the potion.
- ... and so on.

Example Trigger: Two-Way Paths

t: $add_path(y, x)$ PRE(t) $path(x, y) = T \land path(y, x) = \bot$ EFF(t): path(y, x) = T

Example Trigger: Two-Way Paths

t: $add_path(Market, Cottage)$ PRE(t): $path(Cottage, Market) = T \land$ $path(Market, Cottage) = \bot$ EFF(t): path(Market, Cottage) = T

Example Action: Walk

a: walk(Tom, Market, Cottage) PRE(a): at(Tom) = Market ∧ path(Market, Cottage) = T EFF(a): at(Tom) = Cottage CON(a): {Tom} OBS(a,c): at(c) = Market ∨ at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage) PRE(a): at(Tom) = Market ∧ path(Market, Cottage) = T EFF(a): at(Tom) = Cottage CON(a): {Tom} OBS(a,c): at(c) = Market ∨ at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market
EFF(a): at(Tom) = Cottage
CON(a): {Tom}
OBS(a,c): at(c) = Market \lor at(c) = Cottage

Search

Algorithm 1 The Sabre algorithm

- 1: Let \mathcal{A} be the set of all actions defined in the domain.
- 2: SABRE($c_{author}, s_0, \emptyset, s_0$)
- 3: function SABRE (c, r, π, s)
- 4: **Input:** character c, start state r, plan π , current state s
- 5: **if** u(c, s) > u(c, r) and π is non-redundant **then**
- 6: return π
- 7: Choose an action $a \in \mathcal{A}$ such that $s \models PRE(a)$.
- 8: for all $c' \in CON(a)$ such that $c' \neq c$ do
- 9: Let state $b = \alpha(a, \beta(c', s))$.
- 10: **if** *b* is undefined **then return** failure.
- 11: else if SABRE (c', b, \emptyset, b) fails then return failure.
- 12: **return** SABRE $(c, r, \pi \cup a, \alpha(a, s))$

$\alpha(\mathbf{Tot walks to the market.}, s_0) = s_1$

Evaluation

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	\checkmark	\checkmark	\checkmark	X	

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	\checkmark	\checkmark	\checkmark	X	
Glaive	1	1	X	X	

- Riedl and Young, "Narrative planning: balancing plot and character," in JAIR 2010
- Ware and Young, "CPOCL: a narrative planner supporting conflict," in AIIDE 2011
- Teutenberg and Porteous, "Efficient intent-based narrative generation...," in AAMAS 2013
- Ware and Young, "Glaive: a state-space narrative planner...," in AIIDE 2014

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	✓	\checkmark	\checkmark	X	
Glaive	\checkmark	\checkmark	X	X	
HeadSpace	\checkmark	X	~√	X	

• Thorne and Young, "Generating stories ... by modeling false character beliefs," in INT 2017

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	\checkmark	\checkmark	\checkmark	X	
Glaive	\checkmark	\checkmark	X	X	
HeadSpace	\checkmark	X	~√	X	
IMPRACTical	\checkmark	\checkmark	~~	X	

• Teutenberg and Porteous, "Incorporating global and local knowledge...," in AAMAS 2015

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	✓	\checkmark	\checkmark	X	
Glaive	\checkmark	\checkmark	X	X	
HeadSpace	\checkmark	X	~√	X	
IMPRACTical	\checkmark	\checkmark	~√	X	
Thespian	X	\checkmark	\checkmark	\checkmark	

- Ryan, Summerville, Mateas, and Wardrip-Fruin, "Toward characters who observe...," in EXAG 2015
- Si and Marsella, "Encoding Theory of Mind in character design...," in AHCI 2014

Comparing Sabre to Other Planners

	Centralized	Intentions	Beliefs	Uncertainty	
Sabre	\checkmark	\checkmark	\checkmark	X	
Glaive	\checkmark	\checkmark	X	X	
HeadSpace	\checkmark	X	~√	X	
IMPRACTical	\checkmark	\checkmark	~√	X	
Thespian	X	\checkmark	\checkmark	\checkmark	
Ostari	\checkmark	\checkmark	\checkmark	\checkmark	

• Eger and Martens, "Practical specification of belief manipulation in games," in AIIDE 2017

- Raiders
- Space

- Raiders
- Space
- Treasure
- Lovers
- Hubris

- Farrell and Ware, "Narrative planning for belief and intention recognition," in AIIDE 2020
- Shirvani, Farrell, and Ware, "Combining intentionality and belief ...," in AIIDE 2018
- Christensen, Nelson, and Cardona-Rivera, "Using domain compilation to add belief ...," in AIIDE 2020

- Raiders
- Space
- Treasure
- Lovers
- Hubris
- BearBirdJr

- Sack, "Micro-TaleSpin, a story generator," 1992
- Meehan, "TALE-SPIN, an interactive program that writes stories," in AAAI 1977

- Raiders
- Space
- Treasure
- Lovers
- Hubris
- BearBirdJr
- Grandma

• Ware, Garcia, Shirvani, and Farrell, "Multi-agent experience management ...," in AIIDE 2019

Results

Domain	Nodes Generated	Time
Raiders	17,815	1.4 s
Space	192	6 ms
Treasure	288	1 ms
Lovers	5,198,414	40.3 m
Hubris	831	47 ms
BearBirdJr	34,084,068	14.0 m
Grandma	105,178,466	6.2 h

Conclusion

Limitations

- No true uncertainty
- h^+ heuristic often performs poorly¹

Future Work

• More search methods

Algorithm 1 The Sabre algorithm

1: Let \mathcal{A} be the set of all actions defined in the domain. 2: SABRE($c_{author}, s_0, \emptyset, s_0$) 3: **function** SABRE (c, r, π, s) **Input:** character c, start state r, plan π , current state s 4: if u(c,s) > u(c,r) and π is non-redundant then 5: 6: return π Choose an action $a \in A$ such that $s \models PRE(a)$ 7: 8: for all $c' \in CON(a)$ such that $c' \neq c$ do 9: Let state $b = \alpha(a, \beta(c', s))$. if b is undefined then return failure. 10: 11: else if SABRE (c', b, \emptyset, b) fails then return failure. 12: **return** SABRE $(c, r, \pi \cup a, \alpha(a, s))$

Future Work

• More search methods

Algorithm 1 The Sabre algorithm

- 1: Let \mathcal{A} be the set of all actions defined in the domain.
- 2: SABRE $(c_{author}, s_0, \emptyset, s_0)$
- 3: **function** SABRE (c, r, π, s)
- 4: **Input:** character c, start state r, plan π , current state s
- 5: if u(c, s) > u(c, r) and π is non-redundant then 6: return π
- 7: Choose an action $a \in \mathcal{A}$ such that $s \models PRE(a)$.
- 8: for all $c' \in CON(a)$ such that $c' \neq c$ do
- 9: Let state $b = \alpha(a, \beta(c', s))$.
- 10: **if** *b* is undefined **then return** failure.
- 11: else if SABRE (c', b, \emptyset, b) fails then return failure.
- 12: **return** SABRE $(c, r, \pi \cup a, \alpha(a, s))$

Algorithm 2 The Sabre algorithm

- 1: Let \mathcal{A} be the set of all actions defined in the domain.
- 2: SABRE($c_{author}, s_0, \emptyset, s_0$)
- 3: **function** SABRE (c, r, π, s)
- 4: **Input:** character c, start state r, plan π , current state s
- 5: **if** u(c,s) > u(c,r) and π is non-redundant **then**
 - return π

6:

10:

11:

- 7: Choose an action $a \in \mathcal{A}$ such that $s \models PRE(a)$.
- 8: **if** SABRE $(c, r, \pi \cup a, \alpha(a, s))$ fails **then return** failure.
 - for all $c' \in CON(a)$ such that $c' \neq c$ do
 - Let state $b = \alpha(a, \beta(c', s))$.
 - if b is undefined then return failure.
- 12: else if SABRE (c', b, \emptyset, b) fails then return failure.
- 13: return π

Future Work

- More search methods
- Better heuristics
- Agent emotions and personalities¹

1. Shirvani and Ware, "A formalization of emotional planning for strong-story systems," in AIIDE 2020

http://cs.uky.edu/~sgware/projects/sabre

Background Music: https://www.bensound.com

