Sabre

A Narrative Planner Supporting
Intention and Deep Theory of Mind

Stephen G. Ware
Cory Siler

/ I lt\T iilllf rative Iﬂ:& University of
ntelligence
[5 LAB KentUCky

B 0 e
GLAIVE

NARRATIVE PLANNER

SABRE

a NARRATIVE PLANNER

Narrative Planning

L
A single decision maker n @ @

creates the appearance
of a multi-agent system.

g
g7 I

Intentions and Beliefs

C: Classical
Actions are
actually possible.

Intentions and Beliefs

C: Classical
Actions are
actually possible.

I: Intention
Actions can achieve
agent’s goal.

* Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010
» Teutenberg and Porteous, “Efficient intent-based narrative generation...,” in AAMAS 2013
* Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Intentions and Beliefs

C: Classical
Actions are
actually possible.

I: Intention
Actions can increase
agent’s utility.

Intentions and Beliefs

—_

C: Classical B: Belief

Actions are Agent believes the
actually possible. actions are possible.

I: Intention
Actions can increase
agent’s utility.

L —

* Eger and Martens, “Character beliefs in story generation,” INT 2017
* Thorne and Young, “Generating stories ... by modeling false character beliefs,” in INT 2017
 Shirvani, Ware, and Farrell, “A possible worlds model of belief...,” in AIIDE 2017

Intentions and Beliefs

—_

C: Classical B: Belief

Actions are Agent believes the
actually possible. actions are possible.

InB: Believable
Agent believes actions can
increase utility.

I: Intention
Increases utility

* Shirvani, Farrell, and Ware, “Combining intentionality and belief...,” in AIIDE 2018

Syntax and Features

Fluents

at(Tom) =

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

at(Tom) = Cottage

Helmert, “The Fast Downward planning system,” in JAIR 2006

Fluents

at(Tom) = Cottage

path(Cottage, Market) = T

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T

wealth(Merchant) = 3

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T

wealth(Merchant) = 3

believes(Tom,wealth(Merchant)) = 2

Fluents

at(Tom) = Cottage
path(Cottage, Market) = T
wealth(Merchant) = 3

believes(Tom,wealth(Merchant)) = 2

believes(Merchant, believes(Tom,wealth(Merchant))) = 3

Theory of Mind

* Arbitrarily deep
what x believes y believes z believes...

* No uncertainty

Everyone commits to beliefs, which can be wrong.

Other Syntactical Features

* Negation

* Disjunction
e Conditional Effects

* First Order Quantifiers

Actions

buy(Tom, Potion, Merchant, Market)

Actions

a: buy(Tom, Potion, Merchant, Market)

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) = 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market N at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1

EFF(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom A wealth(Merchant) += 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
eFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}
oBs(a, ¢):

Actions

a: buy(Tom, Potion, Merchant, Market)
PRE(a): at(Tom) = Market A at(Merchant) = Market A
at(Potion) = Merchant A wealth(Tom) > 1
EFF(a): at(Potion) = Tom A wealth(Merchant) += 1 A
wealth(Tom) —= 1
coN(a): {Tom, Merchant}
oBs(a,c): at(c) = Market

Triggers

t: see(Tom,Merchant, Market)
PRE(L):

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market A
believes(Tom, at(Merchant)) + Market

EFF(t):

Triggers

t: see(Tom,Merchant, Market)
PRE(t): at(Tom) = Market A at(Merchant) = Market A
believes(Tom, at(Merchant)) + Market

eFF(E): believes(Tom, at(Merchant)) = Market

Pre-Processing

* Make action and trigger results explicit

e Detect and remove immutable fluents

* Detect and remove impossible actions and triggers

Results of an Event

After Tom buys the potion from the merchant...

* Tom has the potion.
* Tom knows he has the potion.
* The merchant knows Tom has the potion.

* Tom know that the merchant knows that he has the potion.

e .. and so on.

Example Trigger: Two-Way Paths

t: add_path(y, x)
PRE(t) path(x,y) = T Apath(y,x) = 1L
EFF(t): path(y,x) =T

Example Trigger: Two-Way Paths

t: add_path(Market, Cottage)
PRE(t): path(Cottage, Market) = T A
path(Market, Cottage) = L

EFF(t): path(Market, Cottage) = -

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market A
path(Market, Cottage) = T
EFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market A
path(Market, Cottage) = T
EFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Example Action: Walk

a: walk(Tom, Market, Cottage)
PRE(a): at(Tom) = Market
eFF(a): at(Tom) = Cottage
coN(a): {Tom}
oBs(a,c): at(c) = Market vV at(c) = Cottage

Search

Algorithm 1 The Sabre algorithm

1: Let A be the set of all actions defined in the domain.
2; SABRE(Cauthors Sos U 80)
3: function SABRE(c, 1, 7, S)

4. Input: character c, start state r, plan 7, current state s
3 if u(c, s) > u(c,r) and 7 is non-redundant then
6: return
i Choose an action a € A such that s = PRE(a).
8: for all ¢’ € CON(a) such that ¢’ # ¢ do
9: Let state b = a(a, B(c, 3)).
10: if b 1s undefined then return failure.
i else if SABRE(C', b, (), b) fails then return failure.

1.2; return SABRE(c, 7, mw U a, a(a, s))

s \I7I\I7INI/

T

B =1

AN

%‘,{mnnu

| walk to the market.

| walk to the market. I buy the potion

from the merchant.

€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

| walk to the market.

Tom buys the potion
from me.

| walk to the market. I buy the potion

from the merchant.

€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

@

| walk to the market. | walk home.

DU
€

v
So Tom walks to the market. e S \/

Falty

| buy the potion
from the merchant.

%

| walk to the market. | walk home.

DU
€

v
So Tom walks to the market. e S \/

E(®

| buy the potion
from the merchant.

%

| walk to the market. | walk home.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchozg

Tom buys the potion

from me.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchant.

| buy the potion

from the merchant.

Tom buys the potion
from the merchant.

| buy the potion

from the merchant.

Tom buys the potion
from the merchant.

Tom buys the potion
from the merchant.

e
e FE

Tom buys the potion

Tom walks home.
from the merchant.

So Tom walks to the market. S1

| walk home.

Tom buys the potion
from the merchant.

Evaluation

Comparing Sabre to Other Planners

Sabre

Comparing Sabre to Other Planners

Sabre
Glaive / J X

X

Riedl and Young, “Narrative planning: balancing plot and character,” in JAIR 2010

Ware and Young, “CPOCL: a narrative planner supporting conflict,” in AIIDE 2011
Teutenberg and Porteous, “Efficient intent-based narrative generation...,” in AAMAS 2013
Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Comparing Sabre to Other Planners

Sabre
Glaive / J X x
HeadSpace V4 X ~J X

* Thorne and Young, “Generating stories ... by modeling false character beliefs,” in INT 2017

Comparing Sabre to Other Planners

Sabre

Glaive / J x
HeadSpace V4 X ~J X
IMPRACTical V4 V4 ~J X

» Teutenberg and Porteous, “Incorporating global and local knowledge...,” in AAMAS 2015

Comparing Sabre to Other Planners

Sabre

Glaive / J

HeadSpace V4 X

IMPRACTical v 4 V4

Thespian X 4 V4

* Ryan, Summerville, Mateas, and Wardrip-Fruin, “Toward characters who observe...,” in EXAG 2015
* Si and Marsella, “Encoding Theory of Mind in character design...,” in AHCI 2014

Comparing Sabre to Other Planners

Sabre

Glaive / J X
HeadSpace V4 X ~J
IMPRACTical v 4 V4 ~J
Thespian X 4 4
Ostari V4 V4 V4

» Eger and Martens, “Practical specification of belief manipulation in games,” in AIIDE 2017

Test Problems

e Raiders

* Space

* Ware and Young, “Glaive: a state-space narrative planner...,” in AIIDE 2014

Test Problems

* Raiders
* Space
e Treasure

e [.overs
e Hubris

* Farrell and Ware, “Narrative planning for belief and intention recognition,” in AIIDE 2020
 Shirvani, Farrell, and Ware, “Combining intentionality and belief ...,” in AIIDE 2018
* Christensen, Nelson, and Cardona-Rivera, “Using domain compilation to add belief ...,” in AIIDE 2020

Test Problems

* Raiders
* Space
e Treasure

e [.overs
e Hubris
* BearBirdjr

* Sack, “Micro-TaleSpin, a story generator,” 1992
* Meehan, “TALE-SPIN, an interactive program that writes stories,” in AAAI 1977

Test Problems

* Raiders

* Space

* Treasure

* Lovers
 Hubris

* BearBirdjr

e Grandma

* Ware, Garcia, Shirvani, and Farrell, “Multi-agent experience management ...,” in AIIDE 2019

R
m

Raiders 17,815

Space 192 6 ms
Treasure 288 1 ms
Lovers 5,198,414 40.3 m
Hubris 831 47 ms
BearBirdjr 34,084,068 14.0 m

Grandma 105,178,466 6.2 h

Conclusion

Limitations

* No true uncertainty

 h™ heuristic often performs poorly!

1. Bonet and Geffner, “Planning as heuristic search,” in AI, 2001

Future Work

 More search methods

Algorithm 1 The Sabre algorithm

1: Let A be the set of all actions defined in the domain.

2. SABRE(Cauthors S0, @, 50)

3: function SABRE(c, r, 7,)

4 Input: character ¢, start state r, plan 7, current state s
5: if u(c, s) > u(e,r) and 7 is non-redundant then

6 return

7 :

8

PRE(q)
for all ¢’ € CON(a) such that ¢’ # c do

Let state b = a(a, 3(c, s)).
10: if b is undefined then return failure.
11: else if SABRE(c, b, (), b) fails then return failure.
12: SABRE(C, T, T O, (A, 3))

Future Work

 More search methods

Algorithm 1 The Sabre algorithm

Algorithm 2 The Sabre algorithm

: Let A be the set of all actions defined in the domain. 1: Let A be the set of all actions defined in the domain.
SABRE(Cauthor, 50, 0, s0) 2: SABRE(Cauthors S0, 0, 80)
. function SABRE(c, r, 7, S) 3: function SABRE(c, 1, 7,)
Input: character ¢, start state r, plan 7, current state s 4. Input: character c, start state r, plan 7, current state s
if u(c, s) > u(e,r) and 7 is non-redundant then 5: if u(c, s) > u(e, r) and 7 is non-redundant then
return 6: return 7
Choose an action a € A such that s = PRE(a). 7 Choose an action a. € A such that s = PRE(q)
for all ¢’ € CON(a) such that ¢’ # c do 8: if SABRE(c, 7, ™ U a, a(a, s)) fails then return failure.

Let state b = a(a, 3(c, s)).

if b is undefined then return failure.
else if SABRE(c, b, (), b) fails then return fai

retur{ SABRE(c, 7, ™ U a, a(a, 8))

for all ¢’ € CON(a) such that ¢" # ¢ do
Let state b = «(a, B(c’, s)).
if b is undefined then return failure.
12: else if SABRE(c’, b, (), b) fails then return failure.

[3: return T

Future Work

 More search methods
e Better heuristics

* Agent emotions and personalities!

1. Shirvani and Ware, “A formalization of emotional planning for strong-story systems,” in AIIDE 2020

W] 3
TR

SABRE

http://cs.uky.edu/~sgware/projects/sabre

]

[=];
Tk

I 1D

Background Music: https://www.bensound. com

