
CIS 700: Interactive Fiction
and Text Generation

Search and
Planning
AIMA Chapters 3 and 7

Problem-Solving Agents
A problem-solving agent must plan.
The computational process that it
undertakes is called search.
It will consider a sequence of actions
that form a path to a goal state.
Such a sequence is called a solution.

1. take pole
2. go out
3. go south
4. catch fish with pole
5. go north
6. pick rose
7. go north
8. go up
9. get branch
10.go down
11.go east
12.give the troll

the fish

13.go east
14.hit guard with branch
15.get key
16.go east
17.get candle
18.go west
19.go down
20.light lamp
21.go down
22.light candle
23.read runes
24.get crown
25.go up

26.go up
27.go up
28.unlock door
29.go up
30.give rose to the princess
31.propose to the princess

32.down
33.down
34.east
35.east
36.wear crown
37.sit on throne

Review of Search Problems
AIMA 3.1-3.3

3

Formal Definition of a Search Problem

1. States: a set S
2. An initial state si∈ S

3. Actions: a set A

∀ s Actions(s) = the set of actions that
can be executed in s.

4. Transition Model: ∀ s∀ a∈Actions(s)
Result(s, a) → sr
sr is called a successor of s

{si }∪ Successors(si)* = state space

5. Path cost (Performance Measure):
Must be additive, e.g. sum of distances,
number of actions executed, …

c(x,a,y) is the step cost, assumed ≥ 0

• (where action a goes from state x
to state y)

6. Goal test: Goal(s)

s is a goal state if Goal(s) is true.
Can be implicit, e.g. checkmate(s)

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

Vacuum World

States: A state of the world says which
objects are in which cells.
In a simple two cell version,
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2n states.

One state is
designated as

the initial state

Goal states: States
where everything is

clean.

Goal states: States
where everything is

clean.

Vacuum World

Actions:
• Suck
• Move Left
• Move Right
• (Move Up)
• (Move Down)

Transition:
Suck – removes dirt
Move – moves in that direction, unless
agent hits a wall, in which case it stays put.

Move Right Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck Suck

Right

Left

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck Suck

Right

Left

Action cost:
Uniform (all actions
are equal cost)

Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Path cost:
Sum of all action costs
along a path

Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Initial
state

Goal states

Solution:
A path from the initial
state to a goal state

Search Algorithms

13

Useful Concepts

State space: the set of all states reachable from the initial state by any
sequence of actions

• When several operators can apply to each state, this gets large very quickly
• Might be a proper subset of the set of configurations

Path: a sequence of actions leading from one state sj to another state sk
Solution: a path from the initial state si to a state sf that satisfies the goal test

Search tree: a way of representing the paths that a search algorithm has
explored. The root is the initial state, leaves of the tree are successor states.

Frontier: those states that are available for expanding (for applying legal
actions to)

14

Solutions and Optimal Solutions

A solution is a sequence of actions from the initial state to a goal
state.

Optimal Solution: A solution is optimal if no solution has a lower
path cost.

15

Basic search algorithms: Tree Search

Generalized algorithm to solve search problems
Enumerate in some order all possible paths from the initial state

• Here: search through explicit tree generation
• ROOT= initial state.
• Nodes in search tree generated through transition model
• Tree search treats different paths to the same node as distinct

16

Generalized tree search

The strategy determines
search process!

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier to the initial state of the problem
do

if the frontier is empty then return failure
choose leaf node for expansion according to strategy & remove from frontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6

8 3 1

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
8 5 6
3 1

2 4
7 5 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Search Tree

18

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Start State

Max Branching Factor = 4

Action:
Move Blank
Tie Left

Action: Up Action: Right
Action: Down

Up Down Right

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6

8 3 1

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
8 5 6
3 1

2 4
7 5 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Search Tree

19

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Repeated
State

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

Graph Search vs Tree Search

20

Search Strategies

Several classic search algorithms differ only by the order of how they expand
their search trees

You can implement them by using different queue data structures

Depth-first search = LIFO queue
Breadth-first search = FIFO queue
Greedy best-first search or A* search = Priority queue

21

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

8-Puzzle Breadth-first search

22

7 2 4
5 6
8 3 1

7 2 4
5 6
8 3 1

Start State

7 2 4
5 6

8 3 1

Action:
Move Blank
Tie Left

7 4
5 2 6
8 3 1

Action: Up

7 2 4
5 6
8 3 1

Action: Right
Action: Down

2 4
7 5 6
8 3 1

Up

7 2 4
8 5 6
3 1

Down

7 2 4
5 6
8 3 1

Right

Search Algorithms

Dimensions for evaluation
• Completeness- always find the solution?
• Optimality - finds a least cost solution (lowest path cost) first?
• Time complexity - # of nodes generated (worst case)
• Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)

23

Properties of breadth-first search

Complete? Yes (if b is finite)
Optimal? Yes, if cost = 1 per step

(not optimal in general)
Time Complexity? 1+b+b2+b3+… +bd = O(bd)
Space Complexity? O(bd) (keeps every node in memory)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)

24

BFS versus DFS

Breadth-first
🗹 Complete,
🗹 Optimal
🗷 but uses O(bd) space

Depth-first
🗷 Not complete unless m is bounded
🗷 Not optimal
🗷 Uses O(bm) time; terrible if m >> d
🗹 but only uses O(b*m) space

25

Time/space complexity variables
b, maximum branching factor of search tree
d, depth of the shallowest goal node
m, maximum length of any path in the state

space (potentially ∞)

Exponential Space (and time) Is Not Good...

• Exponential complexity uninformed search problems cannot be solved for any
but the smallest instances.

• (Memory requirements are a bigger problem than execution time.)

Assumes b=10, 1M nodes/sec, 1000 bytes/node

26

DEPTH NODES TIME MEMORY

2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabytes

14 1014 3.5 years 99 petabytles

Action Castle

27

Art: Formulating a Search Problem
Decide:

Which properties matter & how to represent
• Initial State, Goal State, Possible Intermediate States

Which actions are possible & how to represent
• Operator Set: Actions and Transition Model

Which action is next
• Path Cost Function

Formulation greatly affects combinatorics of search space and therefore
speed of search

28

Tower

Tower Stairs

Down Up
The door is locked.

Courtyard

Down Up

Drawbridge

West

Dungeon Stairs

Down

Great Feasting Hall

East
The guard refuses to let you pass.

East
The troll blocks your way.

Winding Path

West

Up

Dungeon

Down
It's too dark to see.

West

Throne Room

EastEast

Garden Path

South

Top of the Tall Tree

Up

Up West

North

Cottage

In

Fishing Pond

South

Down

The Afterlife

JumpOut North

Action Castle Map Navigation

Let’s consider the sub-task of navigating from one
location to another.

Formulate the search problem

• States: locations in the game
• Actions: move between connected locations
• Goal: move to a particular location like the

Throne Room
• Performance measure: minimize number of

moves to arrive at the goal

Find a solution
• Algorithm that returns sequence of actions

to get from the start sate to the goal.

The frontier tracks order of unexpanded
search nodes. Here we’re using a FIFO queue

The visited dictionary
prevents us from
revising states.

get_available_actions() to return all
commands that could be used here.

The parser can execute this command
to get the resulting state.

Check to see if this state satisfies the
goal test, if so, return the command

sequence that got us here.

TODO: implement
get_state()

TODO: implement goal_test()

TODO: implement get_available_actions()

Tip: We can store multiple objects
on the frontier as a tuple.

Tip: To be used a key in the dictionary get_state()
must return an immutable object

Tip: use deepcopy here

Tip: For BFS, apply the goal test before
putting the new item on the frontier

Action Castle
Let’s consider the full game.

Actions

Start State

Transitions

State Space

Goal test

Actions
Go

Move to a location
Get

Add an item to inventory
Special

Perform a special action
with an item like “Catch
fish with pole”

Drop
Leave an item in current
location

State Info
Location of Player
Items in their inventory
Location of all items /

NPCs
Blocks like
• Troll guarding bridge,
• Locked door to tower,
• Guard barring entry to

castle

My Solution

Classical Planning
AIMA Chapter 11

36

Classical Planning

If an environment is:
• Deterministic
• Fully observable
The solution to any problem in such an
environment is a fixed sequence of actions.

In environments that are
• Nondeterministic or
• Partially observable
The solution must recommend different
future actions depending on the what
percepts it receives. This could be in the
form of a branching strategy.

The task of finding a sequence of action to accomplish a goal in a deterministic, fully-
observable, discrete, static environment.

Representation Language

Planning Domain Definition Language (PDDL) express actions as a schema

Action name

Variables

Preconditions

Effects

Preconditions and
effects are

conjunctions of
logical sentences

These logical sentences
are literals – positive or

negated atomic
sentences

State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are
ground atomic fluents. PDDL uses database semantics.

Ground means
they contain no

variables

Atomic sentences
contain just a

single predicate

Fluent means an aspect
of the world that can

change over time.

Action Schema
has variables

State Representation
arguments are constants

fluents may change over time

Closed world assumption.
Any fluent not mentioned

is false. Unique names
are distinct.

Successor States

A ground action is applicable if if every positive literal in the precondition is true,
and every negative literal in the precondition is false

Ground Action
no variables

Initial State

Result
New state reflecting

the effect of applying
the ground action

Negative literals in the effects
are kept in a delete list, and
positive literals are kept in an

add list

Domains and Problems

Domain Problem
Set of Action

Schema

Initial State

Goal

Algorithms for Classical Planning

We can apply BFS to the initial state through possible states looking for a goal.
An advantage of the declarative representation of action schemas is that we can

also search backwards.
Start with a goal and work backwards towards the initial state.

In our Action Castle example, this would help us with the branching problem that the drop
action introduced. If we work backwards from the goal, then we realize that we don’t
ever need to drop an item for the correct solution.

