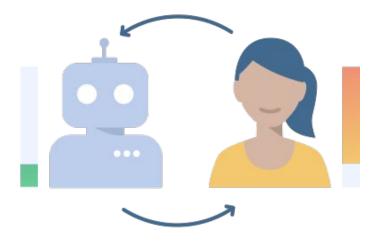
Story Evaluation

Elizabeth Clark 4/14/22 Interactive Fiction

Introduction

The story generation content and examples in today's talk are mainly from work that is:

- Academic
- From/for the NLP community
- Text-based
- Collaborative



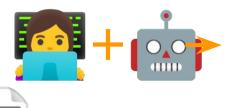
Why we need strong evaluations for story generation

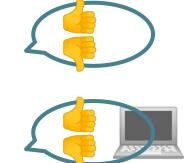
- Validate research hypotheses
- Compare results with other systems
- Understand a model's strengths and weaknesses
- Supports future research and model development
- Well-defined and well-scoped research questions and evaluations allow measurable progress

1. Automatic evaluation of generated stories

2. Human evaluation of generated stories

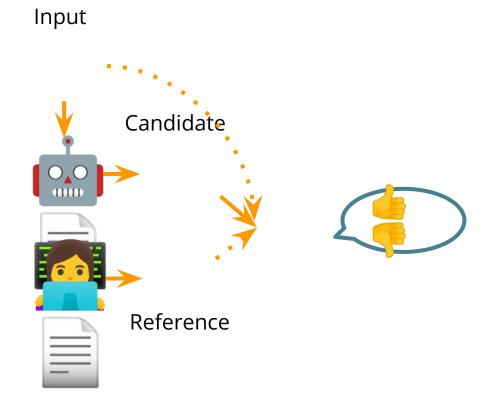
3. Evaluation of human-machine collaborative stories





Automatic story evaluation

- Given a generated story (and optionally additional context), automatically assess its quality
- Pros: does not require the time/\$\$ of human evaluations, can compare and benchmark results
- Cons: a metric's definition of "quality" may not align with a person's definition



Lexical overlap metrics

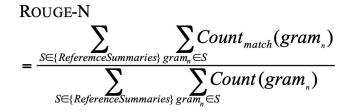
- Measure the *n*-grams shared between two texts
- Compares a candidate text to a reference text

	Metric	Property
	F-SCORE	precision and recall
	BLEU	n-gram precision
	METEOR	n-gram w/ synonym match
	CIDER	tf- idf weighted n -gram sim.
0	NIST	n-gram precision
·lap	GTM	n-gram metrics
n-gram overlap	HLEPOR	unigrams harmonic mean
	RIBES	unigrams harmonic mean
tan	MASI	attribute overlap
60 60	WER	% of insert, delete, replace
u	TER	translation edit rate
	ROUGE	n-gram recall
	DICE	attribute overlap

Evaluation of Text Generation: A Survey Celikyilmaz et al., 2020

Example: ROUGE

Candidate: my favorite food is pineapple



Reference: pineapple is my favorite tropical fruit

 n=1: 4 matches out of 6
 ROUGE-1: 0.67

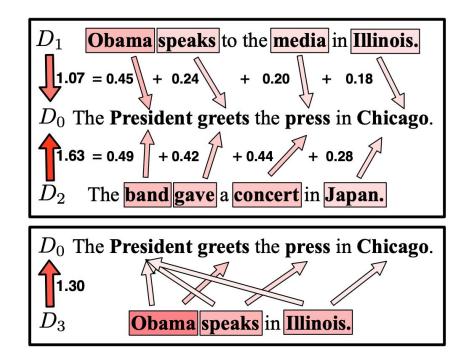
 n=2: 1 match out of 5
 ROUGE-2: 0.20

 n=3: 0 matches out of 4
 ROUGE-3: 0.00

ROUGE: A Package for Automatic Evaluation of Summaries Lin, 2004

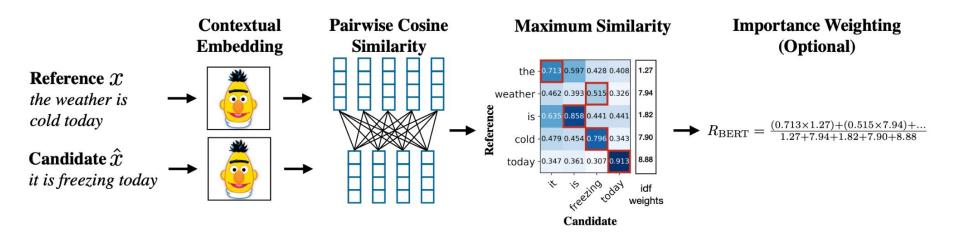
Embedding-based metrics

- Measure a candidate's similarity to a reference text based on their embeddings
- Take advantage of ever-improving pretrained NLP models



From Word Embeddings to Document Distances Kusner et al., 2015

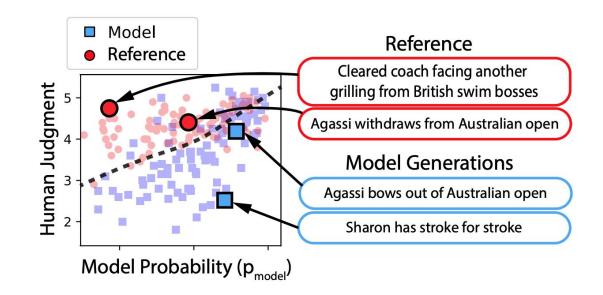
Example: BERTScore



BERTScore: Evaluating Text Generation with BERT Zhang et al., 2020

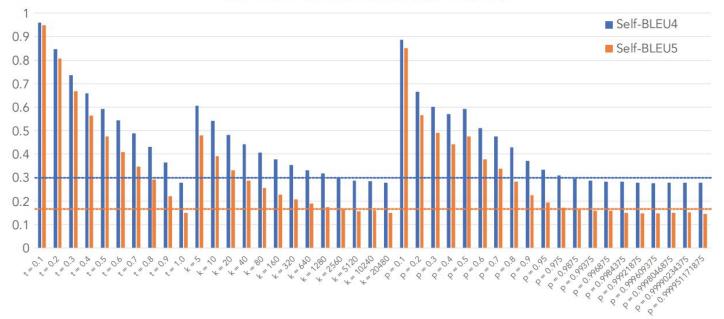
Diversity metrics

- How unique is the generated text?
- Trade-off between text that is high-quality and text that is diverse



Unifying Human and Statistical Evaluation for Natural Language Generation Hashimoto et al., 2019

Example: Self-BLEU



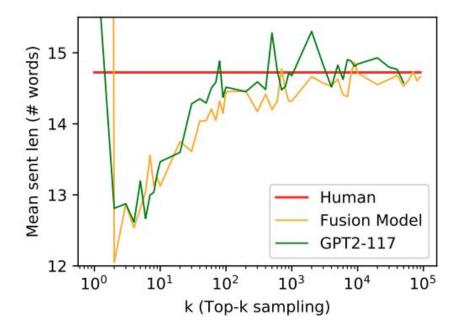
Self-BLEU of Generations Over 5000 Documents

Self-BLEU: Texygen: A Benchmarking Platform for Text Generation Models Zhu et al., 2018

Image: The Curious Case of Neural Text Degeneration Holtzman et al., 2020

Descriptive metrics

- Analysis of the type of language model produces
- The results may not mean much alone, but can be compared to results on reference texts or text generated by other models



Do Massively Pretrained Language Models Make Better Storytellers? See et al., 2019

Example: Fusion model vs. GPT-2

Generated story vs. the prompt

Coherence

Repetition and rareness

Syntactic style and complexity

Surprisingness

Concreteness

Prompt: A man finally discovers his superpower... well into his 80's.

Fusion Model (k = 10):

I be a child . bear into a world of darkness , and in the world , there be only a few people . My mother and I be always alone . She have never be like this . But , she have no idea what we be together to be . We be always alone . We be always together . And , of course , she have never exist . But , I never think about it , be cause she be always alone . In the world , it was n't like she have a power . I be always alone , and there be a time when the light would turn on . There be a time when I could see the light , and I could see it in her eyes , and I could see the light , and I could see it

Mean noun concreteness: 3.892 Mean verb concreteness: 2.173

GPT2-117 (k = 10):

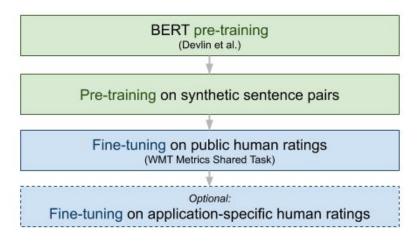
A man in an old white coat sit in a corner. He wear a black jacket with a blue tie. His hair be grey. His eyes be black, but his voice be deep and clear. He look to where the man be sit, and he see a smile on his lips. It be a smile he know he would see from his own eyes. But he be too late. He be on the sidewalk by the river when the man come. He be wear a black coat with a purple tie. He have a black tie and a white shirt. But he be still wear a white suit. And it seem he would look back at him. A smile on his face. A look his friend do n't recognize. He have no

Mean noun concreteness: 4.720 Mean verb concreteness: 2.488

Do Massively Pretrained Language Models Make Better Storytellers? See et al., 2019

Learned metrics

- Train a model on to predict a score of the text's quality
- A metric is usually evaluated by its correlation with human judgments



[Source]

BLEURT: Learning Robust Metrics for Text Generation Sellam et al., 2020

Example: UNION

Leading Context

Jack was at the bar.

Reference By Human

He noticed a phone on the floor. He was going to take it to lost and found. But it started ringing on the way. Jack answered it and returned it to the owner's friends.

Sample 1 (Reasonable, B=0.29, M=0.49, U=1.00) On the way out he noticed a phone on the floor. He asked around if anybody owned it. Eventually he gave it to the bartender. They put it into their lost and found box.

Sample 2 (Reasonable, B=0.14, M=0.27, U=1.00)

He had a drinking problem. He kept having more beers. After a while he passed out. When he waked up, he was surprised to find that he lost over a hundred dollars.

Sample 3 (Unreasonable, B=0.20, M=0.35, U=0.00) He was going to get drunk and get drunk. The bartender told him it was already time to leave. Jack started drinking. Jack wound up returning but cops came on the way home. B: BLEU M: MoverScore U: Union

UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation Guan and Huang, 2020

Example: UNION

Leading Context

Jack was at the bar.

Reference By Human

He noticed a phone on the floor. He was going to take it to lost and found. But it started ringing on the way. Jack answered it and returned it to the owner's friends.

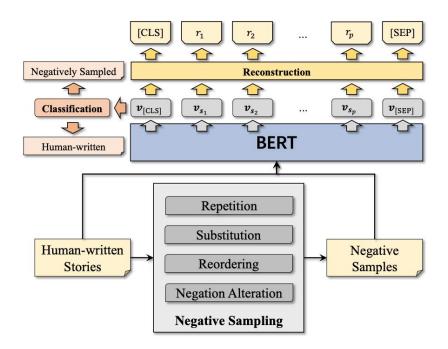
Sample 1 (Reasonable, B=0.29, M=0.49, U=1.00) On the way out he noticed a phone on the floor. He asked around if anybody owned it. Eventually he gave it to the

bartender. They put it into their lost and found box.

Sample 2 (Reasonable, B=0.14, M=0.27, U=1.00)

He had a drinking problem. He kept having more beers. After a while he passed out. When he waked up, he was surprised to find that he lost over a hundred dollars.

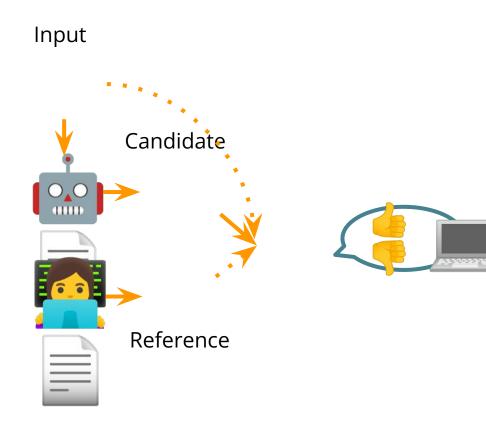
Sample 3 (Unreasonable, B=0.20, M=0.35, U=0.00) He was going to get drunk and get drunk. The bartender told him it was already time to leave. Jack started drinking. Jack wound up returning but cops came on the way home.



UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation Guan and Huang, 2020

Human story evaluation

- People read generated story text and judge their quality
- Judgments can be about overall quality or broken down into specific criteria
- Pros: aligned with modeling goals, can be more specific/nuanced
- Cons: collecting reliable evaluations can be difficult, especially when text is long or complex



Are the participants in the human evaluation...?:

- Experts?
- In-person?
- Crowdsourced?
- Paid?
- Trained?
- Quality-controlled?

amazon mechanical turk

upwork

Dimensions of text quality

Is the text...?

- Grammatical
- Fluent
- Coherent
- Creative
- Surprising
- Entertaining

Criterion Paraphrase	Count
usefulness for task/information need	39
grammaticality	39
quality of outputs	35
understandability	30
correctness of outputs relative to input (content)	29
goodness of outputs relative to input (content)	27
clarity	17
fluency	17
goodness of outputs in their own right	14
readability	14
information content of outputs	14
goodness of outputs in their own right	
(both form and content)	13
referent resolvability	11
usefulness (nonspecific)	11
appropriateness (content)	10
naturalness	10
user satisfaction	10
wellorderedness	10
correctness of outputs in their own right (form)	9
correctness of outputs relative to external	
frame of reference (content)	8
ease of communication	7
humanlikeness	7
appropriateness	6
understandability	6
nonredundancy (content)	6
goodness of outputs relative to system use	5
appropriateness (both form and content)	5

Twenty Years of Confusion in Human Evaluation: NLG Needs Evaluation Sheets and Standardised Definitions

Howcroft et al., 2020

Types of human feedback

Is this generated story...?

- Good or bad
- Good on a scale from 1 to 5
- Better than another story

Q1: Which do you think is better at utilizing the keywords?

- Story 1
- Story 2

Q2: Which do you think is more repetitive?

- Story 1
- Story 2

Q3: Which do you think has better transitions?

- Story 1
- Story 2

Q4: Which do you think is better at following a single storyline?

Story 1
 Story 2

Q5: Which do you think has a better introduction?

- Story 1
- Story 2

Q6: Which do you think has a better conclusion?

• Story 1

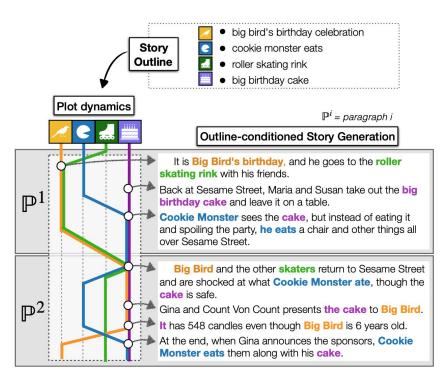
Story 2

Q7: Which do you think has a clear order of events?

Story 1

Story 2

Case study: PlotMachines



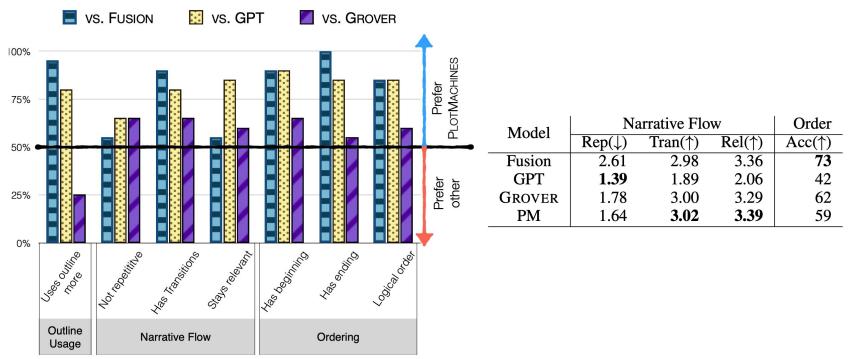
PlotMachines: Automatic evaluation

	V	Vikiplo	ts	Writ	ingPro	mpts	New York Times		
Model	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L
P&W-Static (Yao et al., 2019)	17.0	3.3	13.6	19.2	3.6	14.4	19.3	4.6	15.6
Fusion (Fan et al., 2018)	22.7	6.0	17.4	14.3	1.7	9.6	23.2	7.2	18.1
GROVER (Zellers et al., 2019)	19.6	5.9	12.5	23.7	5.3	17.2	20.0	5.8	14.2
PLOTMACHINES (GPT)	20.2	5.3	16.0	30.5	5.3	25.4	21.2	5.0	15.5
- base (GPT) (Radford et al., 2018)	13.2	2.0	7.9	22.1	2.7	14.3	13.9	1.6	8.3
PLOTMACHINES (GPT-2)	22.8	6.5	17.5	31.1	6.7	26.1	22.1	6.4	16.5
– PM-NoMem (GPT-2)	20.5	4.9	15.5	26.6	3.7	23.5	20.0	5.4	14.4
- PM-NoMem-NoDisc (GPT-2)	19.3	1.7	13.9	26.8	4.5	23.2	18.4	3.4	14.2
- base (GPT-2) (Radford et al., 2019)	18.5	3.9	13.3	26.5	4.6	20.5	19.2	4.7	13.6

	Wikiplots			Writing Prompts				NY Times							
Model	AvgL	B-2	B-3	B-4	B-5	AvgL	B-2	B-3	B-4	B-5	AvgL	B-2	B-3	B-4	B-5
Gold Test	330	.74	.50	.29	.15	661	.82	.61	.40	.25	315	.73	.50	.32	.21
P&W-Static	352	.93	.85	.75	.64	675	.97	.94	.89	.85	352	.93	.85	.74	.63
Fusion	191	.84	.71	.58	.48	197	.93	.85	.75	.65	171	.89	.80	.70	.60
GROVER	835	.72	.49	.48	.37	997	.88	.72	.52	.34	719	.79	.57	.38	.25
GPT	909	.77	.47	.25	.11	799	.73	.40	.19	.08	739	.68	.36	.27	.08
GPT-2	910	.60	.26	.10	.03	799	.74	.41	.19	.08	756	.69	.36	.17	.08
PLOTMACHINES (GPT)	682	.77	.58	.40	.27	850	.89	.81	.72	.63	537	.85	.69	.53	.40
PLOTMACHINES (GPT-2)	553	.56	.19	.07	.02	799	.83	.56	.30	.14	455	.79	.57	.37	.23

PlotMachines: Human evaluation

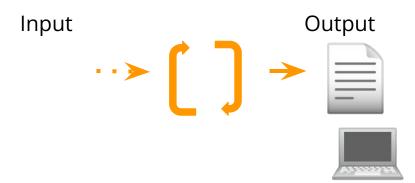
% select PLOTMACHINES vs. other model

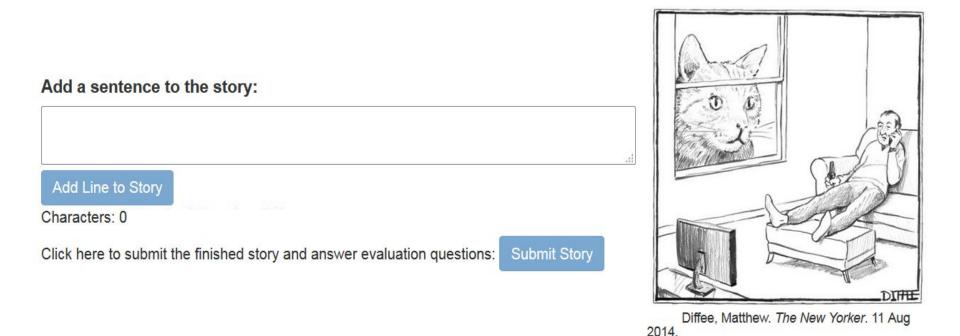


--- Collaborative Story Evaluation ----

Collaborative story generation

- A person works with model output to write a story together
- This collaboration can take many forms, e.g.,:
 - Auto-complete
 - Incorporating keywords or concepts
 - Turn-taking
 - Offering suggestions or improvements





Add a sentence to the story:

Phil woke up on the couch with a huge hangover.

Add Line to Story

Characters: 47

Click here to submit the finished story and answer evaluation questions:

Submit Story

Diffee, Matthew. The New Yorker. 11 Aug 2014.

The prompt will appear below. You can edit it as much as you like before adding it to the story.

Phil woke up on the couch with a huge hangover.

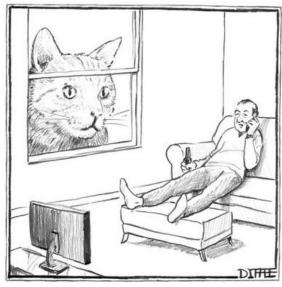
Now he looked at Anne.

Add Line to Story

Characters: 22

Click here to submit the finished story and answer evaluation questions:

Submit Story



Diffee, Matthew. The New Yorker. 11 Aug 2014.

The prompt will appear below. You can edit it as much as you like before adding it to the story.

Phil woke up on the couch with a huge hangover.

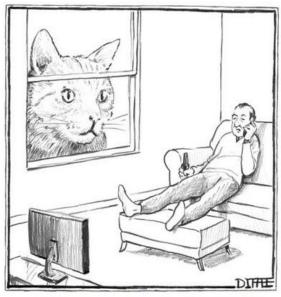
He looked out the window at Anne, the neighbor's cat.

Add Line to Story

Characters: 53

Click here to submit the finished story and answer evaluation questions:

Submit Story



Diffee, Matthew. The New Yorker. 11 Aug 2014.

How does evaluation change?

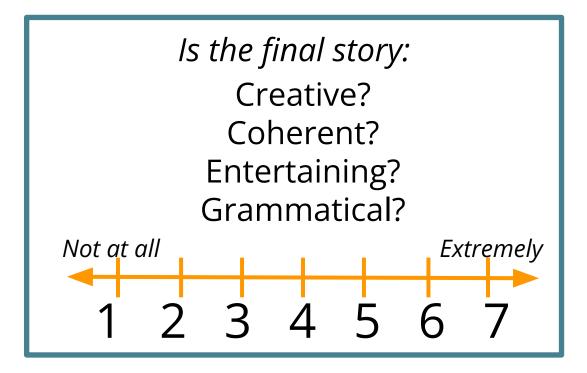
- Reference texts are much rarer
- Text can be a mix of human- and machine-generated text
- "Experience" becomes important, not just the generated text
- Evaluations can be from the writer's perspective or the reader's perspective

"Did you find the generated text helpful?"

VS.

"Did the generated text help produce a high-quality output?"

Example: Two human evaluation perspectives



Types of evaluation for collaborative writing

1. Automatic metrics 2. Human evaluations 3. Interaction

- 3. Interaction metrics
 - Edit distance
 - % suggestions accepted
 - Time to complete the story

Model	Max Len	Avg Len	% Тор	MRR	Time(s)	Time(s)/Sen
Unigram	27	9.41 ± 2.31	0.08 ± 0.09	0.36 ± 0.30	460.5 ± 411.8	44.9 ± 32.0
Bigram	25	9.50 ± 2.51	0.09 ± 0.10	0.34 ± 0.29	492.4 ± 463.7	47.9 ± 35.6
Reranking	27	9.54 ± 2.68	0.07 ± 0.08	0.28 ± 0.07	399.2 ± 294.3	40.1 ± 22.8
Adaptation	36	9.63 ± 3.07	0.04 ± 0.04	0.23 ± 0.04	406.1 ± 286.5	39.3 ± 20.6

Swanson and Gordon, 2012

Challenges in human evaluation with today's models

- Text generation models have improved, and generated text is more fluent and higher quality than ever before
- Crowdsourced evaluations are increasingly common
- The easiest evaluation is not always the best evaluation

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were so close they could touch their horns.

GPT-3

(Brown et al., 2020)

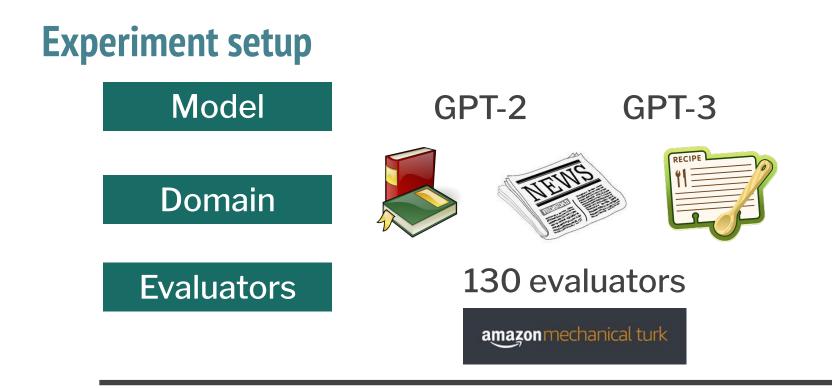
Once upon a time, in a land not so far away, there was a lovely young maiden named Charlotte. She had many admirers, but none as devoted as the prince. They were to be married, and she was the happiest girl in the world. One day, while she was walking in the forest, she came upon a fairy who offered her three wishes. She thought for a long time and then said, "I wish for a million dollars."

"Your wish is granted," said the fairy. "But you must pay a terrible price for it."

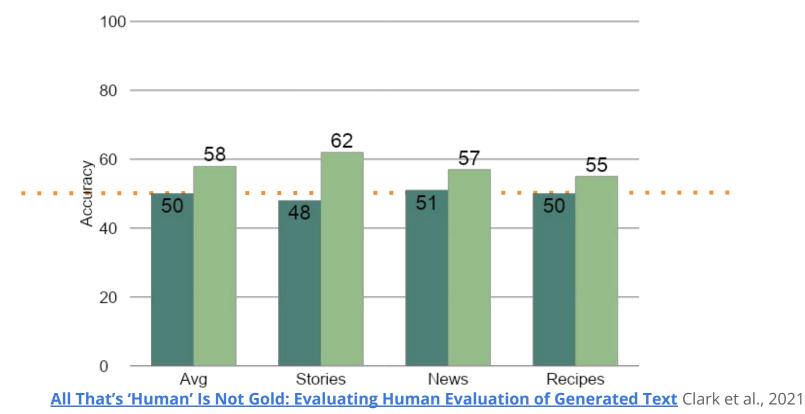
"I don't care," said Charlotte. "I'll do anything to be rich."

Definitely human-generated This looks like something I'd read in a book

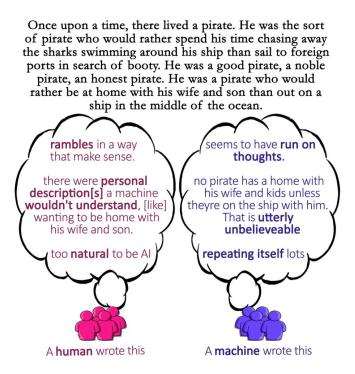
It seems kind of weird for a fantasy character to wish for something as concrete as a million dollars.



780 evaluators, 3900 judgments



Contradicting opinions



What did evaluators say they based their answers on?

Form	Content	Machine abilities
Grammar, genre, level of detail	Common sense, factuality, etc.	Writer's intent or capabilities
47%	25%	28%

Can we train evaluators to do better?

Once upon a time, there was a man in a place that was not a place at all.

He didn't know anything of a place or a time or who he was or what he was doing there. There was just him and the silence.

He sat there for a long time, not knowing what he was doing there. He thought, thought and thought, but he didn't know what to think. There was just him and the silence. He tried to speak, but no sound came from his mouth. He tried to move, but his body would not move. He sat there, but he didn't know for how long he was there.

* What do you think the source of this text is?

Definitely human-written

Possibly human-written

Possibly machine-generated

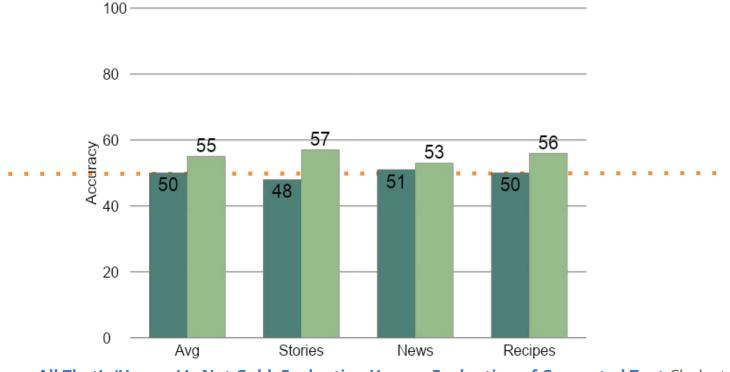
Operated -- Correct Answer

You cannot change your answer once you click submit.

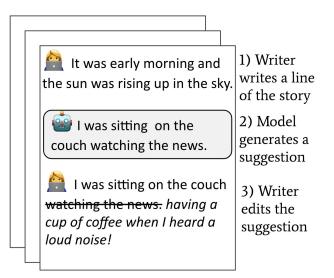
Explanation

Note how the story is repetitive and doesn't seem to go anywhere.

Accuracy after training

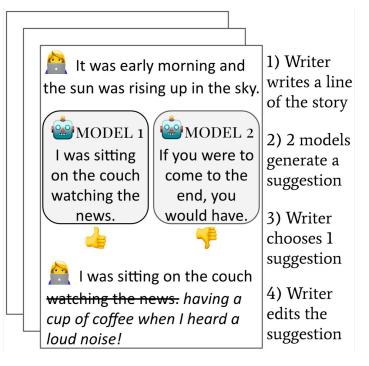


Collaborative story writing



I liked the suggestions I received.

"Choose Your Own Adventure" evaluation



Choose Your Own Adventure: Paired Suggestions in Collaborative Writing for Evaluating Story Generation Models

Clark and Smith, 2021

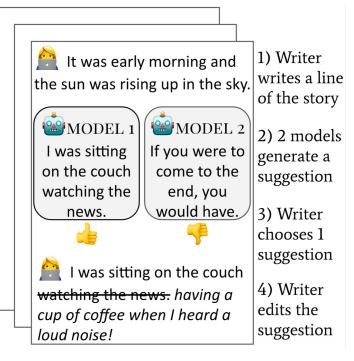
"Choose Your Own Adventure" evaluation

Machine-generated text

Human-authored text

Writer preferences

Writer revisions

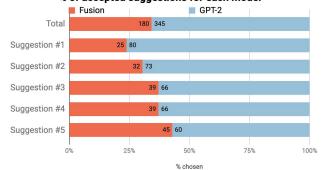


Choose Your Own Adventure: Paired Suggestions in Collaborative Writing for Evaluating Story Generation Models

Clark and Smith, 2021

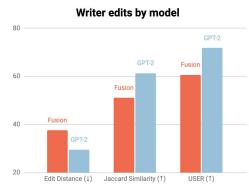
"Choose Your Own Adventure" evaluation

- Is my model better at generating story suggestions than a baseline model?
- 2. How useful are the models' suggestions?
- How does the model-generated text compare to human-authored text?



distinct-3

concreteness concreteness



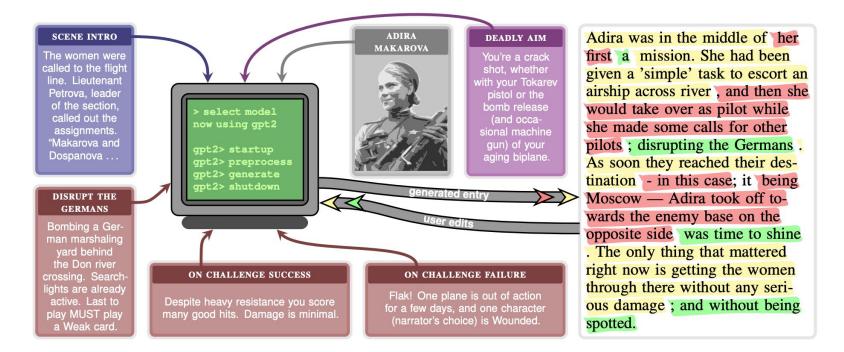
% of accepted suggestions for each model

Choose Your Own Adventure: Paired Suggestions in Collaborative Writing for Evaluating Story Generation Models

distinct-2

Clark and Smith, 2021

Storium



STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation Akoury et al., 2020

CoAuthor

. .

Write

The 92nd little pig built a house out of depleted uranium.

Of course, the little pig was smart. He knew he couldn't live in the house, since it would poison him.

Get suggestions

So he lived in the basement.

So he built a big wall around it, and he lived in a little shack on the other side of the wall.

So he moved next door to it.

He moved in a couple of miles away.

So he built a little shack next to it, and he painted it and put a little flower garden outside and everything.

Edit

• • •

The 92nd little pig built a house out of depleted uranium. There are so many pigs to eat, and they make it so easy!" But the wolf didn't know about uranium.

Of course, the little pig was smart. He knew he couldn't live in the house, since it would poison him. So he built a big wall around it, and he lived in a little, hidden shack on the other side of the wall.

CoAuthor: Designing a Human-AI Collaborative Writing Dataset for Exploring Language Model Capabilities

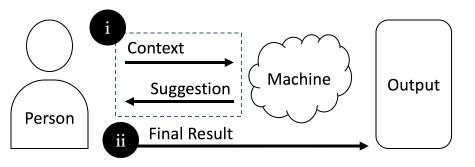
Lee et al., 2022

Collaborative writing for better model evaluation

Collaborative story writing as:

1. An engaging and useful tool for writers

2. An evaluation platform for NLP researchers



Creative Writing with a Machine in the Loop: Case Studies on Slogans and Stories Clark et al., 2018

Recommendations for designing evaluations

Best Practice & Implementation	Yes	No	%
Make informed evaluation choices and document them			
Evaluate on multiple datasets	47	9	83.9
Motivate dataset choice(s)	21	34	38.2
Motivate metric choice(s)	20	46	30.3
Evaluate on non-English language	19	47	28.8
Measure specific generation effects			
Use a combination of metrics from at least two different categories	36	27	57.1
Avoid claims about overall "quality"	34	31	52.3
Discuss limitations of using the proposed method	19	46	29.2
Analyze and address issues in the used dataset(s)			
Discuss or identify issues with the data	19	47	28.8
Contribute to the data documentation or create it if it does not yet exist	1	58	1.
Address these issues and release an updated version		10	23.
Create targeted evaluation suite(s)	14	52	21.2
Release evaluation suite or analysis script	3	63	4.4
Evaluate in a comparable setting			
Re-train or -implement most appropriate baselines	40	19	67.8
Re-compute evaluation metrics in a consistent framework	38	22	63.3
Run a well-documented human evaluation			
Run a human evaluation to measure important quality aspects	48	18	72.
Document the study setup (questions, measurement instruments, etc.)	40	9	81.0
Document who is participating in the study	28	20	58.3
Produce robust human evaluation results			
Estimate the effect size and conduct a power analysis	0	48	0.0
Run significance test(s) on the results	12	36	25.0
Conduct an analysis of result validity (agreement, comparison to gold ratings)	19	29	39.0
Discuss the required rater qualification and background	10	38	20.8
Document results in model cards			
Report disaggregated results for subpopulations	13	53	19.
Evaluate on non-i.i.d. test set(s)	14	52	21.2
Analyze the causal effect of modeling choices on outputs with specific properties	16	50	24.2
Conduct an error analysis and/or demonstrate failures of a model	15	51	22.
Release model outputs and annotations			
Release outputs on the validation set	1	65	1.5
Release outputs on the test set	2	63	3.
Release outputs for non-English dataset(s)	1	25	3.8
Release human evaluation annotations	1	47	2.1

Repairing the Cracked Foundation: A Survey of Obstacles in Evaluation Practices for Generated Text Gehrmann et al., 2022

Considerations for collaborative story evaluation design

- What aspects of the generated text do you care about evaluating most?
- What collaborative role is the model playing?
- Who is the audience for the model?
- Tradeoffs between quality of the evaluation and the quality of the writing experience
- Combinations of evaluation types and methods
- Comparisons to previous methods
- Investigate errors and potential weaknesses
- When reporting evaluation results, explain:
 - What you did
 - Why you did it
 - Possible shortcomings