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Problem-Solving Agents 
A problem-solving agent must plan. 
The computational process that it 
undertakes is called search. 
It will consider a sequence of actions 
that form a path to a goal state.
Such a sequence is called a solution.

1. take pole
2. go out
3. go south
4. catch fish with pole
5. go north
6. pick rose
7. go north
8. go up
9. get branch
10.go down
11.go east
12.give the troll 

the fish

13.go east
14.hit guard with branch
15.get key
16.go east
17.get candle
18.go west
19.go down
20.light lamp
21.go down
22.light candle
23.read runes
24.get crown
25.go up

26.go up
27.go up
28.unlock door
29.go up
30.give rose to the princess
31.propose to the princess

32.down
33.down
34.east
35.east
36.wear crown
37.sit on throne



Review of Search Problems
AIMA 3.1-3.3
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Formal Definition of a Search Problem

1. States: a set S
2. An initial state si∈ S

3. Actions: a set A

∀ s Actions(s) = the set of actions that 
can be executed in s.

4. Transition Model: ∀ s∀ a∈Actions(s) 
Result(s, a) → sr
sr is called a successor of s 

{si }∪ Successors(si )* = state space

5. Path cost (Performance Measure): 
Must be additive, e.g. sum of distances, 
number of actions executed, …

c(x,a,y) is the step cost, assumed ≥ 0

• (where action a goes from state x
to state y)

6. Goal test: Goal(s)

s is a goal state if Goal(s) is true. 
Can be implicit, e.g. checkmate(s)



Vacuum World

States: A state of the world says which 
objects are in which cells.
In a simple two cell version, 
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for 
dirt = 8 states.

With n cells, there are n*2n states. 



Vacuum World

States: A state of the world says which 
objects are in which cells.
In a simple two cell version, 
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for 
dirt = 8 states.

With n cells, there are n*2n states. 



Vacuum World

States: A state of the world says which 
objects are in which cells.
In a simple two cell version, 
• the agent can be in one cell at a time
• each cell can have dirt or not

2 positions for agent * 22 possibilities for 
dirt = 8 states.

With n cells, there are n*2n states. 

One state is 
designated as 

the initial state

Goal states: States 
where everything is 

clean.

Goal states: States 
where everything is 

clean.



Vacuum World

Actions: 
• Suck
• Move Left
• Move Right
• (Move Up)
• (Move Down)

Transition: 
Suck – removes dirt
Move – moves in that direction, unless 
agent hits a wall, in which case it stays put.

Move Right Suck
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Vacuum World
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Action cost: 
Uniform (all actions 
are equal cost)
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Vacuum World
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Path cost: 
Sum of all action costs 
along a path



Suck

Vacuum World

Suck

Right

Left

Right

Left

Suck

Right

Left

Suck

Right

Left

Initial 
state

Goal states

Solution: 
A path from the initial 
state to a goal state



Search Algorithms
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Useful Concepts

State space: the set of all states reachable from the initial state by any
sequence of actions

• When several operators can apply to each state, this gets large very quickly
• Might be a proper subset of the set of configurations

Path: a sequence of actions leading from one state sj to another state sk
Solution: a path from the initial state si to a state sf that satisfies the goal test

Search tree: a way of representing the paths that a search algorithm has 
explored.   The root is the initial state, leaves of the tree are successor states.

Frontier: those states that are available for expanding (for applying legal 
actions to)
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Solutions and Optimal Solutions

A solution is a sequence of actions from the initial state to a goal 
state.

Optimal Solution: A solution is optimal if no solution has a lower 
path cost.
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Basic search algorithms: Tree Search

Generalized algorithm to solve search problems 
Enumerate in some order all possible paths from the initial state

• Here: search through explicit tree generation
• ROOT= initial state.
• Nodes in search tree generated through transition model
• Tree search treats different paths to the same node as distinct
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Generalized tree search

The strategy determines 
search process!

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier  to the initial state of the problem
do 

if the frontier is empty then return failure
choose leaf node for expansion according to strategy & remove from frontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier
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function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

Graph Search vs Tree Search
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Search Strategies

Several classic search algorithms differ only by the order of how they expand 
their search trees

You can implement them by using different queue data structures 

Depth-first search = LIFO queue
Breadth-first search = FIFO queue
Greedy best-first search or A* search = Priority queue 
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Search Algorithms

Dimensions for evaluation
• Completeness- always find the solution?
• Optimality - finds a least cost solution (lowest path cost) first?
• Time complexity - # of nodes generated (worst case) 
• Space complexity - # of nodes simultaneously in memory (worst case) 

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)

23



Properties of breadth-first search

Complete? Yes (if b is finite)
Optimal? Yes, if cost = 1 per step

(not optimal in general)
Time Complexity? 1+b+b2+b3+… +bd = O(bd)
Space Complexity? O(bd) (keeps every node in memory)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially ∞)
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BFS versus DFS

Breadth-first
🗹 Complete, 
🗹 Optimal
🗷 but uses O(bd) space

Depth-first
🗷 Not complete unless m is bounded
🗷 Not optimal
🗷 Uses O(bm) time; terrible if m >> d
🗹 but only uses O(b*m) space
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Time/space complexity variables
b, maximum branching factor of search tree
d, depth of the shallowest goal node
m, maximum length of any path in the state 

space (potentially ∞)



Exponential Space (and time) Is Not Good...

• Exponential complexity uninformed search problems cannot be solved for any 
but the smallest instances.

• (Memory requirements are a bigger problem than execution time.)

Assumes b=10, 1M nodes/sec, 1000 bytes/node
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DEPTH NODES TIME MEMORY

2 110 0.11 milliseconds 107  kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabytes

14 1014 3.5 years 99 petabytles



Action Castle
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Art: Formulating a Search Problem
Decide:

Which properties matter & how to represent
• Initial State, Goal State, Possible Intermediate States

Which actions are possible & how to represent
• Operator Set: Actions and Transition Model

Which action is next
• Path Cost Function

Formulation greatly affects combinatorics of search space and therefore 
speed of search
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Tower

Tower Stairs

Down Up
The door is locked.

Courtyard

Down Up

Drawbridge

West

Dungeon Stairs

Down

Great Feasting Hall

East
The guard refuses to let you pass.

East
The troll blocks your way.

Winding Path

West

Up

Dungeon

Down
It's too dark to see.

West

Throne Room

EastEast

Garden Path

South

Top of the Tall Tree

Up

Up West

North

Cottage

In

Fishing Pond

South

Down

The Afterlife

JumpOut North

Action Castle Map Navigation

Let’s consider the sub-task of navigating from one 
location to another.

Formulate the search problem

• States: locations in the game
• Actions: move between connected locations
• Goal: move to a particular location like the 

Throne Room
• Performance measure: minimize number of 

moves to arrive at the goal

Find a solution
• Algorithm that returns sequence of actions 

to get from the start sate to the goal.



The frontier tracks order of unexpanded 
search nodes. Here we’re using a FIFO queue

The visited dictionary 
prevents us from 
revising states.

get_available_actions() to return all 
commands that could be used here.

The parser can execute this command 
to get the resulting state.

Check to see if this state satisfies the 
goal test, if so, return the command 

sequence that got us here. 

TODO: implement 
get_state()

TODO: implement goal_test()

TODO: implement get_available_actions() 



Tip: We can store multiple objects 
on the frontier as a tuple.

Tip: To be used a key in the dictionary get_state() 
must return an immutable object

Tip: use deepcopy here

Tip: For BFS, apply the goal test before 
putting the new item on the frontier



Action Castle
Let’s consider the full game.

Actions

Start State

Transitions

State Space

Goal test



Actions
Go

Move to a location
Get

Add an item to inventory
Special

Perform a special action 
with an item like “Catch 
fish with pole”

Drop
Leave an item in current 
location



State Info
Location of Player
Items in their inventory
Location of all items / 

NPCs
Blocks like 
• Troll guarding bridge,
• Locked door to tower,
• Guard barring entry to 

castle



My Solution



Classical Planning
AIMA Chapter 11
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Classical Planning

If an environment is:
• Deterministic
• Fully observable
The solution to any problem in such an 
environment is a fixed sequence of actions.

In environments that are
• Nondeterministic or 
• Partially observable
The solution must recommend different 
future actions depending on the what 
percepts it receives.  This could be in the 
form of a branching strategy.

The task of finding a sequence of action to accomplish a goal in a deterministic, fully-
observable, discrete, static environment.



Representation Language

Planning Domain Definition Language (PDDL)  express actions as a schema

Action name

Variables

Preconditions

Effects

Preconditions  and 
effects are 

conjunctions of 
logical sentences 

These logical sentences 
are literals – positive or 

negated atomic 
sentences  



State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are 
ground atomic fluents. PDDL uses database semantics.

Ground means 
they contain no 

variables

Atomic sentences 
contain just a 

single predicate

Fluent means an aspect 
of the world that can 

change over time.

Action Schema
has variables

State Representation
arguments are constants

fluents may change over time

Closed world assumption. 
Any fluent not mentioned 

is false. Unique names 
are distinct.



Successor States

A ground action is applicable if if every positive literal in the precondition is true, 
and every negative literal in the precondition is false 

Ground Action
no variables

Initial State

Result
New state reflecting

the effect of applying
the ground action

Negative literals in the effects 
are kept in a delete list, and 
positive literals are kept in an 

add list



Domains and Problems

Domain Problem
Set of Action 

Schema

Initial State

Goal



Algorithms for Classical Planning

We can apply BFS to the initial state through possible states looking for a goal.
An advantage of the declarative representation of action schemas is that we can 

also search backwards.  
Start with a goal and work backwards towards the initial state.

In our Action Castle example, this would help us with the branching problem that the drop 
action introduced.  If we work backwards from the goal, then we realize that we don’t 
ever need to drop an item for the correct solution.


