i~
S ——

B e £
R TEIIIT

Fiction

ion

ing

Ive
©

and Text Generat

Interact
ing

INecer

UNIVERSITY 0f PENNSYLVANIA

CIS 700
Penn
Eng

Plann

AIMA Chapters 3 and 7

Search and
7

Problem-Solving Agents

A problem-solving agent must plan.

The computational process that it
undertakes is called search.

It will consider a sequence of actions
that form a path to a goal state.

Such a sequence is called a solution.

1. take pole 13.go east

2. go out 14.hit guard with branch

3. go south 15. get key

4. catch fish with pole 16.go east

5. go north 17.get candle

6. pick rose 18. go west

7. go north 19.go down

8. go up 20.1light lamp 26.90 up 32. down

9. get branch 21.go down 27.90 up 33. down

10.go down 22.1light candle 28.unlock door 34.east

11.go east 23.read runes 29.90 up 35.east

12.give the troll 24.get crown 30.give rose to the princess 36.wear crown
the fish 25.9g0 up 31.propose to the princess 37.sit on throne

[naun| o .
& Penn Englnccrmg
O (&

Review of Search Problems

AIMA 3.1-3.3

& Penn Engineering

Formal Definition of a Search Problem

States:tasetS$S Path cost (Performance Measure)

An initial state s,e S Must be additive, e.g. sum of distances,
Actions: a set A number of actions executed, ...

v s Actions(s) = the set of actions that c(x,a,y) is the step cost, assumed 2 0

can be executed in s. * (where action a goes from state x §
Transition Model: v s¥ aeActions(s) to state y)

Result(s, a) — s, Goal test: Goal(s)

s, is called a successor of s s is a goal state if Goal(s) is true.

{s; }U Successors(s;)* = state space Can be implicit, e.g. checkmate(s)

@z\s Penn Engineering

Vacuum World

States: A state of the world says which
objects are in which cells.

In a simple two cell version,
- the agent can be in one cell at a time
« each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2" states.

@Z\E Penn Engineering

Vacuum World

States: A state of the world says which
objects are in which cells.

In a simple two cell version,
- the agent can be in one cell at a time
« each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2" states.

@Z\E Penn Engineering

Goal states: States
Vacuum World where everything is

clean.

States: A state of the world says which
objects are in which cells.

In a simple two cell version,
- the agent can be in one cell at a time
« each cell can have dirt or not

2 positions for agent * 22 possibilities for
dirt = 8 states.

With n cells, there are n*2" states.

One state is
designated as
the initial state

@z\s Penn Engineering

Vacuum World

Move Right Suck
Actions: Transition:
« Suck Suck - removes dirt
« Move Left Move - moves in that direction, unless
. Move Right agent hits a wall, in which case it stays put.

* (Move Up)
« (Move Down)

&

& Penn Engineering

Vacuum World

)
A
PR

Suck

Suck

Suck

Suck

glneerlng

Penn En

&

acuum World

Suck

Action cost:

Uniform (all actions
are equal cost)

@z\s Penn Engineering

acuum World

Path cost:

Sum of all action costs
along a path

Right

Left

@z\s Penn Engineering

Initial
Vacuum World Sstate

Suck

Solution:

A path from the initial
state to a goal state

— — Goal states
‘ébennEiggneenng

Search Algorithms

& Penn Engineering

Useful Concepts

the set of all states reachable from the initial state by any
sequence of actions

When several operators can apply to each state, this gets large very quickly
Might be a proper subset of the set of configurations

a sequence of actions leading from one state s; to another state s,

a path from the initial state s; to a state s, that satisfies the goal test

a way of representing the paths that a search algorithm has
explored. The root is the initial state, leaves of the tree are successor states.

those states that are available for (for applying legal
actions to)

&

% Penn Engineering

Solutions and Optimal Solutions

A solution is a sequence of actions from the initial state to a goal
state.

Optimal Solution: A solution is optimal if no solution has a lower
path cost.

@z\s Penn Engineering

Basic search algorithms: Tree Search

Generalized algorithm to solve search problems

Enumerate in some order all possible paths from the initial state
« Here: search through explicit tree generation
« ROOT= initial state.
- Nodes in search tree generated through transition model
- Tree search treats different paths to the same node as distinct

‘& Penn Engineering 16

Generalized tree search

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier to the initial state of the problem The strategy determines
search process!

do
if the frontier is empty then return failure
choose leaf node for expansion according to stxategy & remove from frontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier

@Z\E Penn Engineering

8-Puzzle Search Tree

Start State
712 |4

o}
W
[—

Max Branching Factor = 4 Action: Down

Action: Up Action: Rig
Action:
7 z 461 _I\Iflizvl_eethlank Z . 2 712 |4
813 (1 813 |1 > |0
813 (1
Right Up Down \ \
712 |4 2 |4 712 |4 712 |4 7 |4 7 |14 712 (4 712 712 |4
5 715 815 5 6 512 (6 5 5 6 5(16 |4 5161
8(3 |1 813 |1 31 83 |1 813]1 813 (1 813 |1 8(3]1 813

@z\s Penn Engineering

2
6
3

2
6
3

2
3

;
&

NN NN NN

2
3

rd

2
3

2

2
S
3

2
5
3
v

7
8

8-Puzzle

-
4
6
1
V\

g
Bt
mc
k
=
-

7

5

8
&

Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

@z\s Penn Engineering

Search Strategies

Several classic search algorithms differ only by the order of how they expand
their search trees

You can implement them by using different queue data structures

= LIFO queue

= FIFO queue
or = Priority queue

@z\s Penn Engineering

8-Puzzle Breadth-first search

Start State
712 |4

o}
W
[—

Action: Down

Action: Up Action: Rig
Action:
7 z 461 _I\Iflizvl_eethlank Z . 2 712 |4
813 (1 813 |1 > |0
813 (1
Right Up Down \ \
712 |4 2 |4 712 |4 712 |4 7 |4 7 |14 712 (4 712 712 |4
5 715 815 5 6 512 (6 5 5 6 5(16 |4 5161
8(3 |1 813 |1 31 83 |1 813]1 813 (1 813 |1 8(3]1 813

@Z\E Penn Engineering 22

Search Algorithms

Dimensions for evaluation
Completeness- always find the solution?
Optimality - finds a least cost solution (lowest path cost) first?
Time complexity - # of nodes generated (worst case)
Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
« b, maximum branching factor of search tree
- d, depth of the shallowest goal node
- m, of any path in the state space (potentially)

@z\s Penn Engineering 23

Properties of breadth-first search

Complete? Yes (if b is finite)
Optimal? Yes, if cost = 1 per step
(not optimal in general)
Time Complexity? 1+b+b2+b3+... +b? = O(bY)
Space Complexity? O(b) (keeps every node in memory)

Time/space complexity variables
« b, maximum branching factor of search tree
- d, depth of the shallowest goal node
- m, of any path in the state space (potentially)

@z\s Penn Engineering 24

Time/space complexity variables

BFS versus DFS b, of search tree
d, of the shallowest goal node
Breadth-first m, of any path in the state
¥ Complete, space (potentially «)
M Optimal

but uses O(b?) space

Depth-first
Not complete unless m is bounded
Not optimal
Uses O(b™) time; terrible if m >>d
M but only uses O(b*m) space

@z\s Penn Engineering

Exponential Space (and time) Is Not Good...

« Exponential complexity uninformed search problems be solved for any
but the smallest instances.
requirements are a bigger problem than time.)

DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 Kkilobytes
4 11110 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabytes
14 1014 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

@Z\E Penn Engineering

Action Castle

& Penn Engineering

Art: Formulating a Search Problem

Decide:

Which properties matter & how to represent
Initial State, Goal State, Possible Intermediate States

Which actions are possible & how to represent
Operator Set: Actions and Transition Model

Which action is next
Path Cost Function

Formulation greatly affects combinatorics of search space and therefore
speed of search

@z\s Penn Engineering

Tower

Action Castle Map Navigation <‘ o

The door is locked.

Tower Stairs

Let's consider the sub-task of navigating from one
location to another, Down|Up

Courtyard

éow%p ‘

Formulate the

East

States: locations in the game West " The troll blocks your way.

i East
*. The guard refuses to let you

A

 Actions: move between connected locations - prawbridge Dungeon Stairs Great Feasting Hal
« Goal: move to a particular location like the T bown
Throne Room West \ East 'It’s t00 dark to see. Up East / West
 Performance measure: minimize number of Winding Path Dungeon Throne Room
moves to arrive at the goal v//' \“\
South ~/North Up \Down
Flnd d Garden Path Top of the Tall Tree
« Algorithm that returns sequence of actions
to get from the start sate to the goal. (" /7" Xouryem P
Cottage Fishing Pond The Afterlife

@z\? Penn Engineering

def BFS(game, goal_conditions):
command_sequence - []

The frontier tracks order of unexpanded

S CELMER A EL I RV LGRS CUR Bl search nodes. Here we're using a FIFO queue

frontier = queue.Queue()

frontier.put((game, command_sequence)) The visited dictionary
prevents us from

visited = dict()
visited[get_state(game)] = True

while not frontier.empty():
(current_game, command_sequence) - frontier.get()
current_state - get_state(current_game)
parser = Parser(current_game)

available_actions = get_available_actions(current_game)

“or command 'n available_actions:
Clone the current game with its state
new_game - copy.deepcopy(current_game)

TODO: implement

revising states. get_state()

get_available_actions() to return all
commands that could be used here.

TODO: implement get_available_actions(

Apply the command to it to get the resulting state The parser can execute this command

parser - Parser(new_game)
parser.parse_command(command)
new_state - get_state(new_game)

Update the sequence of actions that we took to get tq

new_command_sequence - copy.copy(command_sequence)
new_command_sequence.append(command)
if not new_state in visited:
visited[new_state] = True
it goal_test(new_game, goal_conditions):
frontier.put((new_game, new_command_sequence))
Return None to indicate there 1s no solution.
return None

to get the resulting state.

Check to see if this state satisfies the
goal test, if so, return the command
sequence that got us here.

TODO: implement goal_test()

def BFS(game, goal_conditions):
command_sequence - []

goal_test(game, goal_conditions): command_sequence

frontier = queue.Queue()
frontier.put((game, command_sequence

visited = dict()

visited[get_state(game)] = True

frontier.empty():
(current_game, command_sequence) - frontier.get
current_state get_state(current_game)
parser = Parser(current_game)

Tip: We can store multiple objects

on the frontier as a tuple.

Tip: To be used a key in the dictionary get_state()
must return an immutable object

available_actions = get_available_actions(current_game)

command available_actions:
new_game - copy.deepcopy(current_game)
parSéf ParSér(néw_game) - -

parser.parse_command(command)
new_state - get_state(new_game)

Tip: use deepcopy here

new_command_sequence copy.copy(command_sequence)

new_command_sequence.append(command)
new_state visited:
visited[new_state] = True

goal_test(new_game, goal_conditions):

Tip: For BFS, apply the goal test before
putting the new item on the frontier

frontier.put((new_game, new_command_sequence))

CREEEED "

None

Action Castle

Let's consider the full game.
Actions

Start State

Transitions

State Space

Goal test v

Ly

; - '7 : \!“---blr.
b 1] s < P
G i i

R AT D TR 4. 1 © 5

. o

[naun| o .
& Penn Engmccrmg
(& (&

Actions

Go
Move to a location

Get
Add an item to inventory
Special

Perform a special action
with an item like “Catch
fish with pole”

[naun| o .
& Penn Engmccrmg
(& (&

State Info

Location of Player
Items in their inventory

Location of all items /
NPCs

Blocks like
Troll guarding bridge,
Locked door to tower,

Guard barring entry to
castle

[naun| o .
& Penn Engmccrmg
(& (&

v ° solution

- > ['get pole',
My Solution
'go south',
'catch fish with pole’',
'go north',
'pick rose',
'go north',
‘go up',
‘get branch',
'go down',
game = build_game() 'go east',
solution = BFS(game, goal_conditions) 'give the troll the fish',
print("SOLUTION:", solution) 'go east',
'hit guard with branch',
'go east',

» — 'get candle’,
° Found solution at depth 36. 'go west',

Expanded 4138 nodes. Trimmed 18632 nodes. 'go down',
There are 83 nodes on the frontier. 'light lamp',

'go down',

'light candle',

'read runes',

'get crown',

‘go up',

lgo upl'

‘get key',

‘go up',

'unlock door',

‘go up',

'give rose to princess’,
'propose to the princess',
'wear crown',

'go down',

'go down',

'go east',

& Penn Engineering 'go east']

¥ ° goal_conditions = {"at_location" : "Throne Room",
"inventory_contains" : "crown (worn)"}

Classical Planning

AIMA Chapter 11

& Penn Engineering

Classical Planning

The task of finding a sequence of action to accomplish a goal in a deterministic, fully-
observable, discrete, static environment.

If an environment is: In environments that are

« Deterministic * Nondeterministic or

* Fully observable - Partially observable

The solution to any problem in such an The solution must recommend different
environment is a fixed sequence of actions. future actions depending on the what

percepts it receives. This could be in the
form of a branching strategy.

|||||||||||||||||

1l

TP

]Ii """ 1”1; I ‘}!l I' Eiw :h 1![I {\

I

il

@z\s Penn Engineering

Representation Language

Planning Domain Definition Language (PDDL) express actions as a schema

(define (domain action-castle)

(:requirements)
Action name (:types player location direction item)
. (:action go
Variables (— direction - player — location — location)
(and (at) (connected) (not (guarded)))
Preconditions /(and (at) (not (at)))

Effects (:action get
(— item - player — location)
(and (at) (at))
(and (inventory) (not (at)))

4 WCtion drop i
Preconditions and (NS, [hese |ogical sentences

effects are (and (at) (inventory are literals - positive or
conjunctions of (and (at s G negated atomic

logical sentences sentences

&

‘MngnnEkggneeﬁng

State Representation

In PDDL, a state is represented as a conjunction of logical sentences that are
ground atomic fluents. PDDL uses database semantics.

Closed world assumption.
Any fluent not mentioned

Ground means Atomic sentences Fluent means an aspect is false. Unique names
they contain no contain just a of the world that can are distinct
variables single predicate change over time.

Action Schema EEEISSTIRT
has variables (- direction - player — location — location)
(and (at) (connected) (not (guarded)))
(and (at) (not (at)))

State Representation [REEUEE
arguments are constants (connected cottage out gardenpath)

fl t h " (connected gardenpath in cottage)
uents may cnange over ime (connected gardenpath south fishingpond)

(connected fishingpond north gardenpathﬂ
(at npc cottage)

@z\? Penn Engineering

Successor States

A ground action is applicable if if every positive literal in the precondition is true,
and every negative literal in the precondition is false

Ground Action [REEIGSIZ
no variables (out, npc, cottage, gardenpath)

(and (at npc cottage) (connected cottage out gardenpath))
(and (at npc gardenpathbr(not (at npc cottage)))

Initial State UL Negative literals in the effects

(connected cottage out gardenpath)

(connected gardenpath in cottage) are kept in a delete IiSt, and
(connected gardenpath south fishingpond) positive |itera|S are kept in an

(connected fishingpond north gardenpathﬂ

(at npc cottage) add list

Result (connected cottage out gardenpath)
New state reflecting (connected gardenpath in cottage)
the effect of applying (connected gardenpath south fishingpond)
the ground action (connected fishingpond north gardenpath)
(at npc gardenpath)

&

& Penn Engineering

Domains and Problems

Set of Action
Schema

Domain

(define (domain action-castle)
(:requirements

(:types player locatio ¥Ction item)

(:action go
- direction
- location
(and (at
(and (at

- player
- location)

) (connected
:) (not (at)))

(:action get
(- item - player - location)
(and (at) (at))
(and (inventory) (not (at)))
)

(zaction drop
(— item
(and (at
(and (at

- player — location)
) (inventory))
) (not (inventory)

@ﬁ?f&mﬂlfﬁﬁgﬁleerhgg

Problem

(define (problem navigate-to-location)
(:domain action-castle)

(:objects
npc -
cottage gardenpath fishingpond -
in out north south ea

’ Initial State
(:ipit
(connected cottage ou P path)
(connected gardenpa in cottage)
(connected gardenpath south fishingpond)
(connected fishingpond north g
(at npc cottage)

(:goal (and (at npc fishingpond)))

Algorithms for Classical Planning

We can apply BFS to the initial state through possible states looking for a goal.

An advantage of the declarative representation of action schemas is that we can
also search backwards.

Start with a goal and work backwards towards the initial state.

In our Action Castle example, this would help us with the branching problem that the drop
action introduced. If we work backwards from the goal, then we realize that we don't
ever need to drop an item for the correct solution.

&

& Penn Engineering

